research highlights

CO₂ REDUCTION Boron in its element *Angew. Chem. Int. Ed.*

http://doi.org/f9v5zk (2017)

Converting CO_2 into other molecules using artificial photosynthetic processes powered by solar energy is a route to produce fuels and fuel precursors. Photocatalytic approaches to CO_2 conversion typically rely on the use of semiconductors to absorb photons, generating electron–hole pairs to drive the reduction of CO_2 . Now, Jinhua Ye and colleagues in Japan and China report a system in which the photothermal heating properties and catalytic activity of elemental boron are exploited to produce CH_4 and CO from CO_2 using only water and light irradiation in a photothermocatalytic process.

The researchers use largely amorphous boron particles, which, when irradiated with solar energy, are heated due to the photothermal effect, reaching temperatures of almost 380 °C. This causes localized heating that helps to activate CO₂ molecules and leads to hydrolysis of surface boron to produce H₂ and boron oxides. The H₂ reacts with CO₂ catalytically over the boron particles to form the reduced products CH₄ and CO. A control experiment using Al₂O₃ as a substrate, rather than boron, heated to comparable temperatures in a CO_2/H_2 gas stream yielded no CH₄, demonstrating the ability of boron to not only provide the necessary temperatures for reduction of CO₂ but also to catalyse the conversion of CO₂. Under visible light irradiation the system produces CO at a rate of 0.8 µmol h-1 and CH4 at a rate of 1.9 µmol h⁻¹, which is competitive with other systems for photocatalytic CO₂ reduction.

James Gallagher