Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes

Abstract

Even though organic molecules with well-designed functional groups can be programmed to have high electron density per unit mass, their poor electrical conductivity and low cycle stability limit their applications in batteries. Here we report a facile synthesis of π-conjugated quinoxaline-based heteroaromatic molecules (3Q) by condensation of cyclic carbonyl molecules with o-phenylenediamine. 3Q features a number of electron-deficient pyrazine sites, where multiple redox reactions take place. When hybridized with graphene and coupled with an ether-based electrolyte, an organic cathode based on 3Q molecules displays a discharge capacity of 395 mAh g−1 at 400 mA g−1 (1C) in the voltage range of 1.2–3.9 V and a nearly 70% capacity retention after 10,000 cycles at 8 A g−1. It also exhibits a capacity of 222 mAh g−1 at 20C, which corresponds to 60% of the initial specific capacity. Our results offer evidence that heteroaromatic molecules with multiple redox sites are promising in developing high-energy-density, long-cycle-life organic rechargeable batteries.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synthesis methods for redox organic molecules.
Figure 2: Chemical structures and energy diagrams of quinoxaline and its derivatives.
Figure 3: Electrochemical characterization of the π-conjugated heteroaromatic compound based electrode.
Figure 4: Structural evolution during charge/discharge.
Figure 5: The lithiation pathway obtained from simulations.

References

  1. Larcher, D. & Tarascon, J.-M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  Google Scholar 

  2. Armand, M. et al. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 8, 120–125 (2009).

    Article  Google Scholar 

  3. Morita, Y. et al. Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nat. Mater. 10, 947–951 (2011).

    Article  Google Scholar 

  4. Nokami, T. et al. Polymer-bound pyrene-4, 5, 9, 10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 134, 19694–19700 (2012).

    Article  Google Scholar 

  5. Hong, J. et al. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 5, 5335 (2014).

    Article  Google Scholar 

  6. Song, Z., Zhan, H. & Zhou, Y. Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed. 49, 8444–8448 (2010).

    Article  Google Scholar 

  7. Huang, W. et al. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem. Int. Ed. 52, 9162–9166 (2013).

    Article  Google Scholar 

  8. Zhu, Z. et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014).

    Article  Google Scholar 

  9. Deng, W. et al. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3, 2671 (2013).

    Article  Google Scholar 

  10. Zhao, L. et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv. Energy Mater. 2, 962–965 (2012).

    Article  Google Scholar 

  11. Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F. & Bettinger, C. J. Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells. Adv. Mater. 26, 6572–6579 (2014).

    Article  Google Scholar 

  12. Reed, L. D., Ortiz, S. N., Xiong, M. & Menke, E. J. A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem. Commun. 51, 14397–14400 (2015).

    Article  Google Scholar 

  13. Häupler, B. et al. Aqueous zinc-organic polymer battery with a high rate performance and long lifetime. NPG Asia Mater. 8, e283 (2016).

    Article  Google Scholar 

  14. Gan, S., Zhong, L., Gao, L., Han, D. & Niu, L. Electrochemically driven surface-confined acid/base reaction for an ultrafast H+ supercapacitor. J. Am. Chem. Soc. 138, 1490–1493 (2016).

    Article  Google Scholar 

  15. Vlad, A., Singh, N., Rolland, J., Melinte, S., Ajayan, P. M. & Gohy, J.-F. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep. 4, 4315 (2014).

    Article  Google Scholar 

  16. Suga, T., Konishi, H. & Nishide, H. Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem. Commun. 2007, 1730–1732 (2007).

    Article  Google Scholar 

  17. Choi, W., Harada, D., Oyaizu, K. & Nishide, H. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. J. Am. Chem. Soc. 133, 19839–19843 (2011).

    Article  Google Scholar 

  18. Qin, H., Song, Z. P., Zhan, H. & Zhou, Y. H. Aqueous rechargeable alkali-ion batteries with polyimide anode. J. Power Sources 249, 367–372 (2014).

    Article  Google Scholar 

  19. Huskinson, B. et al. A metal-free organic–inorganic aqueous flow battery. Nature 505, 195–198 (2014).

    Article  Google Scholar 

  20. Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015).

    Article  Google Scholar 

  21. Lin, K. et al. Alkaline quinone flow battery. Science 349, 1529–1532 (2015).

    Article  Google Scholar 

  22. Wei, X. et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26, 7649–7653 (2014).

    Article  Google Scholar 

  23. Milczarek, G. & Inganäs, O. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335, 1468–1471 (2012).

    Article  Google Scholar 

  24. Novák, P., Müller, K., Santhanam, K. S. V. & Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–282 (1997).

    Article  Google Scholar 

  25. Oyama, N., Tatsuma, T., Sato, T. & Sotomura, T. Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density. Nature 373, 598–600 (1995).

    Article  Google Scholar 

  26. Chung, W. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

    Article  Google Scholar 

  27. Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).

    Article  Google Scholar 

  28. Guo, W., Yin, Y.-X., Xin, S., Guo, Y.-G. & Wan, L.-J. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 5, 5221–5225 (2012).

    Article  Google Scholar 

  29. Janoschka, T. et al. Reactive inkjet printing of cathodes for organic radical batteries. Adv. Energy Mater. 3, 1025–1028 (2013).

    Article  Google Scholar 

  30. Walker, W. et al. Ethoxycarbonyl-based organic electrode for Li-batteries. J. Am. Chem. Soc. 132, 6517–6523 (2010).

    Article  Google Scholar 

  31. Han, X., Chang, C., Yuan, L., Sun, T. & Sun, J. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 19, 1616–1621 (2007).

    Article  Google Scholar 

  32. Chen, D. et al. A rigid naphthalenediimide triangle for organic rechargeable lithium-ion batteries. Adv. Mater. 27, 2907–2912 (2015).

    Article  Google Scholar 

  33. Chen, H. et al. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 131, 8984–8988 (2009).

    Article  Google Scholar 

  34. Jaffe, A., Valdes, A. S. & Karunadasa, H. I. Quinone-functionalized carbon black cathodes for lithium batteries with high power densities. Chem. Mater. 27, 3568–3571 (2015).

    Article  Google Scholar 

  35. Liang, Y., Zhang, P., Yang, S., Tao, Z. & Chen, J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 3, 600–605 (2013).

    Article  Google Scholar 

  36. Castillo-Martínez, E., Carretero-González, J. & Armand, M. Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. Angew. Chem. Int. Ed. 53, 5341–5345 (2014).

    Article  Google Scholar 

  37. Yao, M. et al. Indigo carmine: an organic crystal as a positive-electrode material for rechargeable sodium batteries. Sci. Rep. 4, 3650 (2013).

    Article  Google Scholar 

  38. Chen, R., Luo, R., Huang, Y., Wu, F. & Li, L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv. Sci. 3, 1600051 (2016).

    Article  Google Scholar 

  39. Wu, X. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 1, e1500330 (2015).

    Article  Google Scholar 

  40. Skujins, S., Delderfield, J. & Webb, G. A. Spectroscopic and structural studies of some oxocarbon condensation products—II: a mass spectrometric study of some substituted phenazines and quinoxalines. Tetrahedron 25, 3947–3954 (1969).

    Article  Google Scholar 

  41. Burgstahler, A. W. & Barkhurst, R. C. Preparation of leuconic acid from inositol. Trans. Kansas Acad. Sci. 71, 150–153 (1968).

    Article  Google Scholar 

  42. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  Google Scholar 

  43. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  Google Scholar 

  44. Frisch, M. J. et al. Gaussian 09, Revision A (Gaussian, 2009).

    Google Scholar 

  45. Hehre, W. J., Ditchfie, R. & Pople, J. A. Self-consistent molecular-orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  Google Scholar 

  46. Dill, J. D. & Pople, J. A. Self-consistent molecular-orbital methods. XV. Extended gaussian-type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 62, 2921–2923 (1975).

    Article  Google Scholar 

  47. Francl, M. M. et al. Self-consistent molecular-orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77, 3654–3665 (1982).

    Article  Google Scholar 

  48. Miertuš, S., Scrocco, E. & Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981).

    Article  Google Scholar 

  49. Zhou, M. et al. High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222–6228 (2015).

    Article  Google Scholar 

  50. Chung, K. Y., Yoon, W., Kim, K., Cho, B.-W. & Yang, X.-Q. Formation of an SEI on a LiMn2O4 cathode during room temperature charge–discharge cycling studied by soft X-ray absorption spectroscopy at the fluorine K-edge. J. Appl. Electrochem. 41, 1295–1299 (2011).

    Article  Google Scholar 

  51. Tasaki, K., Goldberg, A., Lian, J.-J., Walker, M., Timmons, A. & Harris, S. J. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J. Electrochem. Soc. 156, A1019–A1027 (2009).

    Article  Google Scholar 

  52. Aurbach, D., Weissman, I. & Schechter, A. X-ray photoelectron spectroscoscopy studies of lithium surface prepared in several important electrolyte solution. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir 12, 3991–4007 (1996).

    Article  Google Scholar 

  53. Li, W., Yao, H., Yan, K., Zheng, G., Liang, Z., Chiang, Y.-M. & Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Article  Google Scholar 

  54. Schechter, A. & Aurbach, D. X-ray photoelectron spectroscoscopy study of surface films formd on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15, 3334–3342 (1999).

    Article  Google Scholar 

  55. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694 (2009).

    Article  Google Scholar 

  56. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  Google Scholar 

  57. Cheng, X.-B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation Investigator Award (NRF-NRF12015-01) ‘Graphene oxide – A new class of catalytic, ionic and molecular sieving materials’ funded by National Research Foundation, Prime Minister’s Office, Singapore. Y.Y. would like to acknowledge the financial support for their research at Xiamen University from National Natural Science Foundation of China (Grant Nos 21233004 and 21621091) and National Key Research and Development Program (Grant No. 2016YFB0901502).

Author information

Authors and Affiliations

Authors

Contributions

C.P., J.S., C.S., Y.-S.H., Y.Y. and K.P.L. conceived and designed this work. J.S., C.P., G.-H.N. and D.Y. performed the syntheses and characterization of 2Q and 3Q materials, including 15N-labelled 3Q samples. G.-H.N. and B.T. prepared and characterized single-crystalline 3Q. C.P. and G.-H.N. conducted the EPR characterization. J.S. and C.P. assembled the cells for 2Q and 3Q and conducted the measurements. C.P. and G.Z. assembled the pouch cells for 15N-labelled 3Q and characterized the resource for 15N- and 13C-labelled 3Q during the charging/discharging processes. C.P., G.Z., Y.-S.H., M.-F.N., J.Y., M.A., Y.Y. and K.L. analysed the solid-state NMR results and proposed the mechanism. M.-F.N. conducted the DFT simulation. W.T. and J.S. performed TEM for 3Q samples after cycling. C.P. acquired high-resolution SRPES data. C.P., G.-H.N., L.Z., M.-F.N., J.Y., Y.-S.H., Y.Y., M.A. and K.P.L. co-wrote the manuscript. All the authors discussed the results and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Yong Yang or Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–36, Supplementary Tables 16, Supplementary Notes (PDF 2982 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Ning, GH., Su, J. et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat Energy 2, 17074 (2017). https://doi.org/10.1038/nenergy.2017.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.74

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing