Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth

Abstract

For crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The tunnel-IBC solar-cell concept and its low-complexity fabrication process.
Figure 2: Interband-tunnelling passivating contact for electrons.
Figure 3: The doped Si:H bilayer microstructure.
Figure 4: Best tunnel-IBC solar cell.

Similar content being viewed by others

References

  1. Jäger-Waldau, A. PV Status Report 2016. JRC Science for Policy Report (Publications Office of the European Union, 2016).

    Google Scholar 

  2. Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016).

    Article  Google Scholar 

  3. International Energy Agency 2015 Snapshot of Global Photovoltaic Markets (International Energy Agency Photovoltaic Power System Programme (IEA PVPS), 2016); http://www.iea-pvps.org/fileadmin/dam/public/report/PICS/IEA-PVPS_-__A_Snapshot_of_Global_PV_-_1992-2015_-_Final_2_02.pdf

  4. Powell, D. M. et al. Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874–5883 (2012).

    Article  Google Scholar 

  5. Green, M. A. Commercial progress and challenges for photovoltaics. Nat. Energy 1, 15015 (2016).

    Article  Google Scholar 

  6. Glunz, S. W. et al. The irresistible charm of a simple current flow pattern — 25% with a solar cell featuring a full-area back contact. In Proc. 31st Eur. Photovoltaic Solar Energy Conf. Exhib. (EUPVSEC) 259–263 (WIP, Renewable Energies, 2015).

  7. Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

    Article  Google Scholar 

  8. Aleman, M. et al. Development and integration of a high efficiency baseline leading to 23% IBC cells. Energy Procedia 27, 638–645 (2012).

    Article  Google Scholar 

  9. Peibst, R. et al. High-efficiency RISE-IBC solar cells: influence of rear side-passivation on pn-junction meander recombination. In Proc. 28th Eur. Photovoltaic Solar Energy Conf. Exhib. (EUPVSEC) 971–975 (WIP, Renewable Energies, 2013).

    Google Scholar 

  10. Reichel, C., Granek, F., Hermle, M. & Glunz, S. W. Back-contacted back-junction n-type silicon solar cells featuring an insulating thin film for decoupling charge carrier collection and metallization geometry. Prog. Photovolt. Res. Appl. 21, 1063–1076 (2013).

    Google Scholar 

  11. Savin, H. et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat. Nanotech. 10, 624–628 (2015).

    Article  Google Scholar 

  12. Franklin, E. et al. Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell. Prog. Photovolt. Res. Appl. 24, 411–427 (2016).

    Article  Google Scholar 

  13. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 48). Prog. Photovolt. Res. Appl. 24, 905–913 (2016).

    Article  Google Scholar 

  14. Mingirulli, N. et al. Efficient interdigitated back-contacted silicon heterojunction solar cells. Phys. Status Solidi 5, 159–161 (2011).

    Google Scholar 

  15. Lee, S.-Y. et al. Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell. Sol. Energy Mater. Sol. Cells 120A, 412–416 (2014).

    Article  Google Scholar 

  16. Paviet-Salomon, B. et al. Back-contacted silicon heterojunction solar cells: optical-loss analysis and mitigation. IEEE J. Photovolt. 5, 1293–1303 (2015).

    Article  Google Scholar 

  17. Zhang, L. et al. Experimental and simulated analysis of p a-Si:H defects on silicon heterojunction solar cells: trade-offs between Voc and FF. In Proc. 42nd IEEE Photovoltaic Specialist Conf. (PVSC) 1–5 (IEEE, 2015).

  18. Xu, M. et al. Process development of silicon heterojunction interdigitated back-contacted (SHJ-IBC) solar cells bonded to glass. In Proc. 32nd Eur. Photovoltaic Solar Energy Conf. Exhib. (EUPVSEC) 328–330 (2016).

  19. Yang, G., Ingenito, A., Isabella, O. & Zeman, M. IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts. Sol. Energy Mater. Sol. Cells 158, 84–90 (2016).

    Article  Google Scholar 

  20. Harrison, S. et al. Back contact heterojunction solar cells patterned by laser ablation. Energy Procedia 92, 730–737 (2016).

    Article  Google Scholar 

  21. Rienäcker, M. et al. Junction resistivity of carrier-selective polysilicon on oxide junctions and its impact on solar cell performance. IEEE J. Photovolt. 7, 11–18 (2017).

    Article  Google Scholar 

  22. Chunduri, S. Solar research institute ISFH attains 25% cell efficiency with POLO contacts approach in combination with backcontact architecture. TaiyangNews (10 February 2017); http://taiyangnews.info/technology/25-polo-solar-cell-from-isfh

  23. Smith, D. D. et al. Toward the practical limits of silicon solar cells. IEEE J. Photovolt. 4, 1465–1469 (2014).

    Article  Google Scholar 

  24. Masuko, K. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

    Article  Google Scholar 

  25. Nakamura, J. et al. Development of heterojunction back contact Si solar cells. IEEE J. Photovolt. 4, 1491–1495 (2014).

    Article  Google Scholar 

  26. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  Google Scholar 

  27. De Wolf, S., Descoeudres, A., Holman, Z. C. & Ballif, C. High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012).

    Article  Google Scholar 

  28. Best Research-Cell Efficiencies (NREL, 2016); http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg

  29. Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article  Google Scholar 

  30. Esaki, L. New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109, 603–604 (1958).

    Article  Google Scholar 

  31. Kobayashi, E. et al. Light-induced performance increase of silicon heterojunction solar cells. Appl. Phys. Lett. 109, 153503 (2016).

    Article  Google Scholar 

  32. Spee, D. A. Preparations for Making Back Contacted Heterojunction Solar Cells. MSc thesis, Utrecht University (2008).

  33. Herasimenka, S. Y., Tracy, C. J., Dauksher, W. J., Honsberg, C. B. & Bowden, S. A simplified process flow for silicon heterojunction interdigitated back contact solar cells: using shadow masks and tunnel junctions. In Proc. 40th IEEE Photovoltaic Specialist Conf. (PVSC) 2486–2490 (2014).

  34. Lu, M., Bowden, S., Das, U. & Birkmire, R. Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation. Appl. Phys. Lett. 91, 063507 (2007).

    Article  Google Scholar 

  35. Hermle, M., Granek, F., Schultz-Wittmann, O. & Glunz, S. W. Shading effects in back-junction back-contacted silicon solar cells. In Proc. 33rd IEEE Photovoltaic Specialist Conf. (PVSC) 1–4 (2008).

    Google Scholar 

  36. Tomasi, A. et al. Back-contacted silicon heterojunction solar cells with efficiency >21%. IEEE J. Photovolt. 4, 1046–1054 (2014).

    Article  Google Scholar 

  37. Amano, C., Sugiura, H., Yamamoto, A. & Yamaguchi, M. 20.2% efficiency Al0.4Ga0.6As/GaAs tandem solar cells grown by molecular beam epitaxy. Appl. Phys. Lett. 51, 1998–2000 (1987).

    Article  Google Scholar 

  38. Meier, J. et al. The ‘Micromorph’ solar cells: a new way to high efficiency thin film silicon solar cells. In Proc. 13th Eur. Photovoltaic Solar Energy Conf. Exhib. (EUPVSEC) 1445–1450 (1995).

    Google Scholar 

  39. Schüttauf, J.-W. et al. Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells. Sol. Energy Mater. Sol. Cells 133, 163–169 (2015).

    Article  Google Scholar 

  40. Essig, S. et al. Wafer-bonded GaInP/GaAs//Si solar cells with 30% efficiency under concentrated sunlight. IEEE J. Photovolt. 5, 977–981 (2015).

    Article  Google Scholar 

  41. Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).

    Article  Google Scholar 

  42. Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016).

    Article  Google Scholar 

  43. Fujiwara, H. & Kondo, M. Effects of a-Si:H layer thicknesses on the performance of a-Si:H/c-Si heterojunction solar cells. J. Appl. Phys. 101, 054516 (2007).

    Article  Google Scholar 

  44. Tomasi, A. Back-Contacted Silicon Heterojunction Solar Cells. PhD dissertation, École polytechnique fédérale de Lausanne (2016).

  45. Tomasi, A. et al. Photolithography-free interdigitated back-contacted silicon heterojunction solar cells with efficiency >21%. In Proc. 40th IEEE Photovoltaic Specialist Conf. (PVSC) 3644–3648 (2014).

    Google Scholar 

  46. Ledinský, M. et al. Profilometry of thin films on rough substrates by Raman spectroscopy. Sci. Rep. 6, 37859 (2016).

    Article  Google Scholar 

  47. Wurfel, U., Cuevas, A. & Wurfel, P. Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461–469 (2015).

    Article  Google Scholar 

  48. Brendel, R. & Peibst, R. Contact selectivity and efficiency in crystalline silicon photovoltaics. IEEE J. Photovolt. 6, 1413–1420 (2016).

    Article  Google Scholar 

  49. Tomasi, A. et al. Transparent electrodes in silicon heterojunction solar cells: influence on contact passivation. IEEE J. Photovolt. 6, 17–27 (2016).

    Article  Google Scholar 

  50. Rößler, R., Leendertz, C., Korte, L., Mingirulli, N. & Rech, B. Impact of the transparent conductive oxide work function on injection-dependent a-Si:H/c-Si band bending and solar cell parameters. J. Appl. Phys. 113, 144513 (2013).

    Article  Google Scholar 

  51. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (John Wiley, 2006).

    Book  Google Scholar 

  52. Alpuim, P., Chu, V. & Conde, J. P. Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition. J. Vac. Sci. Technol. A 19, 2328–2334 (2001).

    Article  Google Scholar 

  53. Strahm, B., Howling, A. A., Sansonnens, L. & Ch, H. Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges. Plasma Sources Sci. Technol. 16, 80–89 (2007).

    Article  Google Scholar 

  54. Seif, J. P. et al. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells. IEEE J. Photovolt. 6, 1132–1140 (2016).

    Article  Google Scholar 

  55. Nogay, G. et al. Nanocrystalline silicon carrier collectors for silicon heterojunction solar cells and impact on low-temperature device characteristics. IEEE J. Photovolt. 6, 1654–1662 (2016).

    Article  Google Scholar 

  56. Demaurex, B. et al. Low-temperature plasma-deposited silicon epitaxial films: growth and properties. J. Appl. Phys. 116, 053519 (2014).

    Article  Google Scholar 

  57. Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R. & Collins, R. W. Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry. Appl. Phys. Lett. 73, 1526–1528 (1998).

    Article  Google Scholar 

  58. Collins, R. W. et al. Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry. Sol. Energy Mater. Sol. Cells 78, 143–180 (2003).

    Article  Google Scholar 

  59. Cabarrocas, P. R. I., Layadi, N., Heitz, T., Drévillon, B. & Solomon, I. Substrate selectivity in the formation of microcrystalline silicon: mechanisms and technological consequences. Appl. Phys. Lett. 66, 3609–3611 (1995).

    Article  Google Scholar 

  60. Bullock, J. et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat. Energy 1, 15031 (2016).

    Article  Google Scholar 

  61. Yang, X. et al. High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells. Adv. Mater. 28, 5891–5897 (2016).

    Article  Google Scholar 

  62. Wan, Y. et al. Magnesium fluoride electron-selective contacts for crystalline silicon solar cells. ACS Appl. Mater. Interfaces 8, 14671–14677 (2016).

    Article  Google Scholar 

  63. Gogolin, R. et al. Analysis of series resistance losses in a-Si:H/c-Si heterojunction solar cells. IEEE J. Photovolt. 4, 1169–1176 (2014).

    Article  Google Scholar 

  64. Tatsuro, W. et al. Rear-emitter Si heterojunction solar cells with over 23% efficiency. Appl. Phys. Exp. 8, 021402 (2015).

    Article  Google Scholar 

  65. Römer, U. et al. Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions. Sol. Energy Mater. Sol. Cells 131, 85–91 (2014).

    Article  Google Scholar 

  66. Teplin, C. W. et al. Breakdown physics of low-temperature silicon epitaxy grown from silane radicals. Phys. Rev. B 74, 235428 (2006).

    Article  Google Scholar 

  67. Teplin, C. W., Jiang, C.-S., Stradins, P. & Branz, H. M. Cone kinetics model for two-phase film silicon deposition. 92, 093114 (2008).

  68. Khanna, A. et al. A fill factor loss analysis method for silicon wafer solar cells. IEEE J. Photovolt. 3, 1170–1177 (2013).

    Article  Google Scholar 

  69. Wan, Y., Yan, D., Bullock, J., Zhang, X. & Cuevas, A. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride. Appl. Phys. Lett. 107, 231606 (2015).

    Article  Google Scholar 

  70. Holman, Z. C., Descoeudres, A., De Wolf, S. & Ballif, C. Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors. IEEE J. Photovolt. 3, 1243–1249 (2013).

    Article  Google Scholar 

  71. Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

    Article  Google Scholar 

  72. Geissbühler, J. et al. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107, 081601 (2015).

    Article  Google Scholar 

  73. Sakai, Y., Fukuyama, K., Matsumura, M., Nakato, Y. & Tsubomura, H. The effect of interposing thin oxide layers on the photovoltaic properties of a-Si:H solar cells II between the middle n and p layers of a tandem-type cell. J. Appl. Phys. 64, 394–398 (1988).

    Article  Google Scholar 

  74. Demaurex, B., De Wolf, S., Descoeudres, A., Charles Holman, Z. & Ballif, C. Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering. Appl. Phys. Lett. 101, 171604 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss Commission for Technology and Innovation (CTI) by the Swiss Federal Office for Energy (SFOE), and by the Fonds National Suisse Reequip Program. The authors thank Meyer Burger Research for scientific partnership and financial support; D. Lachenal and B. Strahm for support and collaboration in back-contacted silicon heterojunction solar-cell development; J. Hermans and Meyer Burger B.V. for the support in inkjet printing; M. Pickrell and SunChemicals for supplying the hot melt; the Academic Writing Services at KAUST for text editing; M. J. Lehmann, N. Badel and H. Watanabe at EPFL and CSEM for their support in back-end processing; and A. Hessler at EPFL and CIME for the TEM observations.

Author information

Authors and Affiliations

Authors

Contributions

A.T., B.P.-S., M.D. and C.B. conceived the idea. A.T. designed the experiments and carried out the device fabrication in collaboration with B.P.-S. Q.J. carried out the TEM observations. L.B. and A.D. developed the a-Si:H(i) passivating films. J.P.S. contributed to the development of the doped Si:H thin-film materials. S.N. and G.C. developed and deposited the TCO material. J.H. and S.D.W. contributed to the definition and presentation of the paper contents. S.D.W., M.D. and C.B. discussed the results and organized the research. A.T. wrote the paper, and all other authors provided feedback.

Corresponding author

Correspondence to Andrea Tomasi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Supplementary Figures 1–6, Supplementary Tables 1–5, Supplementary References. (PDF 1689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomasi, A., Paviet-Salomon, B., Jeangros, Q. et al. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth. Nat Energy 2, 17062 (2017). https://doi.org/10.1038/nenergy.2017.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing