Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode

Abstract

Black silicon (b-Si) is a surface-nanostructured Si with extremely efficient light absorption capability and is therefore of interest for solar energy conversion. However, intense charge recombination and low electrochemical stability limit the use of b-Si in photoelectrochemical solar-fuel production. Here we report that a conformal, ultrathin, amorphous TiO2 film deposited by low-temperature atomic layer deposition (ALD) on top of b-Si can simultaneously address both of these issues. Combined with a Co(OH)2 thin film as the oxygen evolution catalyst, this b-Si/TiO2/Co(OH)2 heterostructured photoanode was able to produce a saturated photocurrent density of 32.3 mA cm−2 at an external potential of 1.48 V versus reversible reference electrode (RHE) in 1 M NaOH electrolyte. The enhanced photocurrent relative to planar Si and unprotected b-Si photoelectrodes was attributed to the enhanced charge separation efficiency as a result of the effective passivation of defective sites on the b-Si surface. The 8-nm ALD TiO2 layer extends the operational lifetime of b-Si from less than half an hour to four hours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopy and spectroscopy of black silicon photoanodes.
Figure 2: PEC water oxidation performance of planar silicon and black silicon-based photoanodes.
Figure 3: Sulfite oxidation and charge separation properties of black silicon-based photoanodes.
Figure 4: Stability evaluation of black silicon-based photoanodes under in-air and in-electrolyte conditions.

Similar content being viewed by others

References

  1. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, 1920 (2016).

    Article  Google Scholar 

  2. Khaselev, O. & Turner, J. A. Monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Article  Google Scholar 

  3. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  Google Scholar 

  4. Joya, K. S., Joya, Y. F., Ocakoglu, K. & van de Krol, R. Water-splitting catalysis and solar fuel devices: artificial leaves on the move. Angew. Chem. Int. Ed. 52, 10426–10437 (2013).

    Article  Google Scholar 

  5. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    Article  Google Scholar 

  6. Liu, C., Colon, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    Article  Google Scholar 

  7. Wang, G. et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011).

    Article  Google Scholar 

  8. Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013).

    Article  Google Scholar 

  9. Kim, T. W. & Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  Google Scholar 

  10. Huang, Z., Geyer, N., Werner, P., de Boor, J. & Gosele, U. Metal-assisted chemical etching of silicon: a review. Adv. Mater. 23, 285–308 (2011).

    Article  Google Scholar 

  11. Yuan, G. et al. Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion. Angew. Chem. Int. Ed. 50, 2334–2338 (2011).

    Article  Google Scholar 

  12. Oh, J., Deutsch, T. G., Yuan, H.-C. & Branz, H. M. Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ. Sci. 4, 1690–1694 (2011).

    Article  Google Scholar 

  13. Zhao, Y. et al. Oxidatively stable nanoporous silicon photocathodes with enhanced onset voltage for photoelectrochemical proton reduction. Nano Lett. 15, 2517–2525 (2015).

    Article  Google Scholar 

  14. Ali, M. et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016).

    Article  Google Scholar 

  15. Oh, J., Yuan, H. C. & Branz, H. M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotech. 7, 743–748 (2012).

    Article  Google Scholar 

  16. Savin, H. et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nat. Nanotech. 10, 624–628 (2015).

    Article  Google Scholar 

  17. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011).

    Article  Google Scholar 

  18. Chen, L. et al. p-type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation. J. Am. Chem. Soc. 137, 9595–9603 (2015).

    Article  Google Scholar 

  19. Ji, L. et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotech. 10, 84–90 (2015).

    Article  Google Scholar 

  20. Sun, K. et al. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films. Proc. Natl Acad. Sci. USA 112, 3612–3617 (2015).

    Google Scholar 

  21. Wang, W. C. et al. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. ACS Appl. Mater. Interfaces 5, 9752–9759 (2013).

    Article  Google Scholar 

  22. Wang, W. C., Tsai, M. C., Yang, J., Hsu, C. & Chen, M. J. Efficiency enhancement of nanotextured black silicon solar cells using Al2O3/TiO2 dual-layer passivation stack prepared by atomic layer deposition. ACS Appl. Mater. Interfaces 7, 10228–10237 (2015).

    Article  Google Scholar 

  23. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  Google Scholar 

  24. Gu, J. et al. Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nat. Mater. 15, 456–460 (2016).

    Article  Google Scholar 

  25. Qiu, J. et al. Microscopic study of atomic layer deposition of TiO2 on GaAs and its photocatalytic application. Chem. Mater. 27, 7977–7981 (2015).

    Article  Google Scholar 

  26. Shaner, M. R., Hu, S., Sun, K. & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2 . Energy Environ. Sci. 8, 203–207 (2015).

    Article  Google Scholar 

  27. Lee, C. Y., Park, H. S., Fontecilla-Camps, J. C. & Reisner, E. Photoelectrochemical H2 evolution with a hydrogenase immobilized on a TiO2-protected silicon electrode. Angew. Chem. Int. Ed. 55, 5971–5974 (2016).

    Article  Google Scholar 

  28. Hill, J. C., Landers, A. T. & Switzer, J. A. An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation. Nat. Mater. 14, 1150–1155 (2015).

    Article  Google Scholar 

  29. Ng, J. W. D. et al. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 1, 16053 (2016).

    Article  Google Scholar 

  30. Feng, J. X. et al. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 27, 7051–7057 (2015).

    Article  Google Scholar 

  31. Yang, J. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat. Mater. 16, 335–341 (2017).

    Article  Google Scholar 

  32. Yang, J. et al. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. J. Am. Chem. Soc. 136, 6191–6194 (2014).

    Article  Google Scholar 

  33. Lin, F. & Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 13, 81–86 (2014).

    Article  Google Scholar 

  34. Laskowski, F. L., Nellist, M. R., Venkatkarthickab, R. & Boettcher, S. W. Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry. Energy Environ. Sci. 10, 570–579 (2017).

    Article  Google Scholar 

  35. Sun, K. et al. Stable solar-driven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J. Phys. Chem. Lett. 6, 592–598 (2015).

    Article  Google Scholar 

  36. Caban-Acevedo, M. et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245–1251 (2015).

    Article  Google Scholar 

  37. Garnett, E. & Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).

    Article  Google Scholar 

  38. Branz, H. M. et al. Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl. Phys. Lett. 94, 231121 (2009).

    Article  Google Scholar 

  39. Yang, W. et al. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett. 15, 7574–7580 (2015).

    Article  Google Scholar 

  40. Yu, Y., Yin, X., Kvit, A. & Wang, X. Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. Nano Lett. 14, 2528–2535 (2014).

    Article  Google Scholar 

  41. Yu, Y. et al. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano 9, 564–572 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Work on ALD-based growth and structure characterization is supported by US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award # DE-SC0008711. The rest of the work is supported by the National Major Research Program of China (No. 2013CB932602); the Program of Introducing Talents of Discipline to Universities (B14003); National Natural Science Foundation of China (No. 51527802, 51232001, 51602020 and 51672026); and Beijing Municipal Science & Technology Commission.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., Y.Z. and X.W. conceived the ideas, designed the experiments and oversaw the entire project. Y.Y. and Z.Z. performed the device fabrication, electrochemical measurements and data analysis. Y.Y. Q.L., Z.K. and X.Yan conducted the SEM, XPS and XRD characterizations. Y.Y., X.Yin and A.K. carried out the TEM, STEM and EELS mappings. Y.Y., Z.Z., Y.Z. and X.W. wrote the manuscript. All authors discussed the experiments and commented on the manuscript.

Corresponding authors

Correspondence to Yue Zhang or Xudong Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–16. (PDF 1810 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhang, Z., Yin, X. et al. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat Energy 2, 17045 (2017). https://doi.org/10.1038/nenergy.2017.45

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing