Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The effectiveness of US energy efficiency building labels

A Corrigendum to this article was published on 11 April 2017

Abstract

Information programs are promising strategies to encourage investments in energy efficiency in commercial buildings. However, the realized effectiveness of these programs has not yet been estimated on a large scale. Here we take advantage of a large sample of monthly electricity consumption data for 178,777 commercial buildings in Los Angeles to analyse energy savings and emissions reductions from three major programs designed to encourage efficiency: the US Department of Energy’s Better Buildings Challenge, the US Environmental Protection Agency’s Energy Star program and the US Green Building Council’s Leadership in Energy and Environmental Design (LEED) program. Using matching techniques, we find energy savings that range from 18% to 30%, depending on the program. These savings represent a reduction of 210 million kilowatt-hours or 145 kilotons of CO2 equivalent emissions per year. However, we also find that these programs do not substantially reduce emissions in small and medium sized buildings, which represent about two-thirds of commercial sector building emissions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Bias reduction in matched samples for the three energy programs.
Figure 2: Comparison of site Energy Use Intensity.

References

  1. 1

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

    Google Scholar 

  2. 2

    Buildings and Climate Change: Summary for Decision-Makers DTI/1240/PA (UNEP, 2009).

  3. 3

    National Research Council Real Prospects for Energy Efficiency in the United States (National Academies, 2010).

  4. 4

    Energy Star Facts and Stats 2015 (EPA, 2015); www.energystar.gov/buildings/about-us/facts-and-stats

  5. 5

    Green Building Facts (USGBC, 2015); http://stg.usgbc.org/articles/green-building-facts

  6. 6

    Better Buildings Challenge Overview (DOE, 2016); http://betterbuildingssolutioncenter.energy.gov/sites/default/files/attachments/Better%20Buildings%20Challenge%20Overview.pdf

  7. 7

    Better Buildings 2012 Progress Report (DOE, 2012); https://www4.eere.energy.gov/challenge/sites/default/files/uploaded-files/BB_ProgressRpt_508_121112.pdf

  8. 8

    Delmas, M. A., Fischlein, M. & Asensio, O. I. Information strategies and energy conservation behavior: a meta-analysis of experimental studies from 1975–2012. Energy Policy 61, 729–739 (2013).

    Article  Google Scholar 

  9. 9

    Potoski, M. & Prakash, A. Green clubs: collective action and voluntary environmental programs. Annu. Rev. Polit. Sci. 16, 399–419 (2013).

    Article  Google Scholar 

  10. 10

    Eichholtz, P., Kok, N. & Quigley, J. M. The economics of green building. Rev. Econ. Stat. 95, 50–63 (2013).

    Article  Google Scholar 

  11. 11

    Eichholtz, P., Kok, N. & Quigley, J. M. Doing well by doing good? Green office buildings. Am. Econ. Rev. 100, 2492–2509 (2010).

    Article  Google Scholar 

  12. 12

    Fuerst, F. & McAllister, P. Green noise or green value? Measuring the effects of environmental certification on office values. Real Estate Econ. 39, 45–69 (2011).

    Article  Google Scholar 

  13. 13

    Kahn, M. E. & Kok, N. The capitalization of green labels in the California housing market. Reg. Sci. Urban Econ. 47, 25–34 (2014).

    Article  Google Scholar 

  14. 14

    Mathew, P. A. et al. Big-data for building energy performance: lessons from assembling a very large national database of building energy use. Appl. Energy 140, 85–93 (2015).

    Article  Google Scholar 

  15. 15

    Pincetl, S., Graham, R., Murphy, S. & Sivaraman, D. Analysis of high-resolution utility data for understanding energy use in urban systems: the case of Los Angeles, California. J. Ind. Ecol. 20, 166–178 (2016).

    Article  Google Scholar 

  16. 16

    Heckman, J. J., Ichimura, H., Smith, J. & Todd, P. Sources of selection bias in evaluating social programs: an interpretation of conventional measures and evidence on the effectiveness of matching as a program evaluation method. Proc. Natl Acad. Sci. USA 93, 13416–13420 (1996).

    Article  Google Scholar 

  17. 17

    Allcott, H. & Greenstone, M. Is there an energy efficiency gap? J. Econ. Perspect. 26, 3–28 (2012).

    Article  Google Scholar 

  18. 18

    Allcott, H. & Mullainathan, S. Behavior and energy policy. Science 327, 1204–1205 (2010).

    Article  Google Scholar 

  19. 19

    Asensio, O. I. & Delmas, M. A. Nonprice incentives and energy conservation. Proc. Natl Acad. Sci. USA 112, E510–E515 (2015).

    Article  Google Scholar 

  20. 20

    Boomhower, J. & Davis, L. A credible approach for measuring inframarginal participation in energy efficiency programs. J. Public Econ. 113, 67–79 (2014).

    Article  Google Scholar 

  21. 21

    Ito, K. Do consumers respond to marginal or average price? Evidence from nonlinear electricity pricing. Am. Econ. Rev. 104, 537–563 (2014).

    Article  Google Scholar 

  22. 22

    Imai, K., King, G. & Stuart, E. A. Misunderstandings between experimentalists and observationalists about causal inference. J. R. Stat. Soc. A 171, 481–502 (2008).

    MathSciNet  Article  Google Scholar 

  23. 23

    Keane, M. P. A structural perspective on the experimentalist school. J. Econ. Perspect. 24, 47–58 (2010).

    Google Scholar 

  24. 24

    Ho, D. E., Imai, K., King, G. & Stuart, E. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199–236 (2007).

    Article  Google Scholar 

  25. 25

    Imbens, G. W. & Wooldridge, J. M. Recent developments in the econometrics of program evaluation. J. Econ. Lit. 47, 5–86 (2009).

    Article  Google Scholar 

  26. 26

    Sekhon, J. S. Opiates for the matches: matching methods for causal inference. Annu. Rev. Polit. Sci. 12, 487–508 (2009).

    Article  Google Scholar 

  27. 27

    Pincetl, S. Los Angeles Energy Atlas (California Center for Sustainable Communities, 2016); www.energyatlas.ucla.edu

    Google Scholar 

  28. 28

    Los Angeles Recognized for Leadership in Energy Efficiency, Better Buildings Challenge (DOE, 2014); http://energy.gov/articles/los-angeles-recognized-leadership-energy-efficiency-better-buildings-challenge

  29. 29

    Crawley, D. B., Hand, J. W., Kummert, M. & Griffith, B. T. Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 43, 661–673 (2008).

    Google Scholar 

  30. 30

    Deng, Y., Li, Z. & Quigley, J. M. Economic returns to energy-efficient investments in the housing market: evidence from Singapore. Reg. Sci. Urban Econ. 42, 506–515 (2012).

    Article  Google Scholar 

  31. 31

    Andam, K. S., Ferraro, P. J., Pfaff, A. & Sanchez-Azofeifa, G. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).

    Article  Google Scholar 

  32. 32

    Noah, M. A. et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). J. Am. Med. Assoc. 306, 1659–1668 (2011).

    Article  Google Scholar 

  33. 33

    Brady, H. E. & McNulty, J. E. Turning out to vote: the costs of finding and getting to the polling place. Am. Polit. Sci. Rev. 105, 115–134 (2011).

    Article  Google Scholar 

  34. 34

    Diamond, A. & Sekhon, J. S. Genetic matching for estimating causal effects: a general multivariate matching method for achieving balance in observational studies. Rev. Econ. Stat. 95, 932–945 (2013).

    Article  Google Scholar 

  35. 35

    Delmas, M. A. & Pekovic, S. Resource efficiency strategies and market conditions. Long Range Plan. 48, 80–94 (2015).

    Article  Google Scholar 

  36. 36

    Arimura, T. H., Li, S., Newell, R. G. & Palmer, K. Cost-effectiveness of electricity energy efficiency programs. Energy J. 33, 63–99 (2012).

    Article  Google Scholar 

  37. 37

    Loughran, D. S. & Kulick, J. Demand-side management and energy efficiency in the United States. Energy J. 25, 19–43 (2004).

    Article  Google Scholar 

  38. 38

    Auffhammer, M., Blumstein, C. & Fowlie, M. Demand-side management and energy efficiency revisited. Energy J. 29, 91–104 (2008).

    Article  Google Scholar 

  39. 39

    Anderson, S. T. & Newell, R. G. Information programs for technology adoption: the case of energy-efficiency audits. Resour. Energy Econ. 26, 27–50 (2004).

    Article  Google Scholar 

  40. 40

    Jaffe, A. B. & Stavins, R. N. The energy-efficiency gap what does it mean? Energy Policy 22, 804–810 (1994).

    Article  Google Scholar 

  41. 41

    Gillingham, K., Newell, R. G. & Palmer, K. Energy efficiency economics and policy. Annu. Rev. Resour. Econ. 1, 597–620 (2009).

    Article  Google Scholar 

  42. 42

    Dietz, T. Narrowing the US energy efficiency gap. Proc. Natl Acad. Sci. USA 107, 16007–16008 (2010).

    Article  Google Scholar 

  43. 43

    Matisoff, D. C., Noonan, D. S. & Flowers, M. E. Policy monitor—green buildings: economics and policies. Rev. Environ. Econ. Policy 10, 329–346 (2016).

    Article  Google Scholar 

  44. 44

    DeCanio, S. J. Barriers within firms to energy-efficient investments. Energy Policy 21, 906–914 (1993).

    Google Scholar 

  45. 45

    Blass, V., Corbett, C. J., Delmas, M. A. & Muthulingam, S. Top management involvement and the adoption of energy efficiency practices: evidence from small and medium-sized manufacturing firms in the US. Energy 65, 560–571 (2014).

    Article  Google Scholar 

  46. 46

    Muthulingam, S., Corbett, C. J., Benartzi, S. & Oppenheim, B. Energy efficiency in small and medium-sized manufacturing firms: order effects and the adoption of process improvement recommendations. Manuf. Serv. Oper. Manage. 15, 596–615 (2013).

    Article  Google Scholar 

  47. 47

    Sekhon, J. S. Multivariate and propensity score matching software with automated balance optimization: the matching package for R. J. Stat. Softw. 42, 1–52 (2011).

    Article  Google Scholar 

  48. 48

    Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55 (1983).

    MathSciNet  Article  Google Scholar 

  49. 49

    Abadie, A. & Imbens, G. W. Bias-corrected matching estimators for average treatment effects. J. Bus. Econ. Stat. 29, 1–11 (2011).

    MathSciNet  Article  Google Scholar 

  50. 50

    Caliendo, M. & Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 22, 31–72 (2008).

    Article  Google Scholar 

  51. 51

    Asensio, O. I. & Delmas, M. A. The dynamics of behavior change: evidence from energy conservation. J. Econ. Behav. Organ. 126, 196–212 (2016).

    Article  Google Scholar 

  52. 52

    Rosenbaum, P. R. Observational Studies (Springer, 2002).

    Book  Google Scholar 

  53. 53

    Kahn, M. E., Kok, N. & Quigley, J. M. Carbon emissions from the commercial buildings sector: the role of climate, quality and incentives. J. Public Econ. 113, 1–12 (2014).

    Article  Google Scholar 

  54. 54

    Asensio, O. Matching code for buildings (2017); http://dx.doi.org/10.6084/m9.figshare.4625119

Download references

Acknowledgements

This study would not be possible without S. Pincetl and her Energy Atlas team at the California Center for Sustainable Communities. For collaboration and access to program data, we thank D. Hodgins and J. Gould at the Los Angeles Better Buildings Challenge and B. Stapleton at the Los Angeles Cleantech Incubator. We also thank T. Vir Singh for high performance computing support on the Hoffman2 cluster. For helpful comments and suggestions, we thank H. Godwin, P. Kareiva, B. Lawrence, J. Lim, S. Neff, S. Muthulingam, S. Pincetl, D. Rajagopal, J. Sekhon and M. Tikoff Vargas. This research was supported by funding from the UCLA Rosalinde and Arthur Gilbert Program in Real Estate, Finance and Urban Economics; the Easton Technology Leadership Program at the UCLA Anderson School of Management; the University of California Center for Energy and Environmental Economics at Berkeley; the UCLA Institute for Digital Research and Education (IDRE) Postdoctoral Fellowship, and the Pritzker Distinguished Chair in Environment and Sustainability.

Author information

Affiliations

Authors

Contributions

O.I.A. and M.A.D. contributed equally to this study.

Corresponding author

Correspondence to Magali A. Delmas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2, Supplementary Tables 1–11, Supplementary Notes 1–3, Supplementary References. (PDF 1130 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asensio, O., Delmas, M. The effectiveness of US energy efficiency building labels. Nat Energy 2, 17033 (2017). https://doi.org/10.1038/nenergy.2017.33

Download citation

Further reading

Search

Quick links