Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes

Abstract

Hydrogen evolution on platinum is a key reaction for electrocatalysis and sustainable energy storage, yet its pH-dependent kinetics are not fully understood. Here we present a detailed kinetic study of hydrogen adsorption and evolution on Pt(111) in a wide pH range. Electrochemical measurements show that hydrogen adsorption and hydrogen evolution are both slow in alkaline media, consistent with the observation of a shift in the rate-determining step for hydrogen evolution. Adding nickel to the Pt(111) surface lowers the barrier for hydrogen adsorption in alkaline solutions and thereby enhances the hydrogen evolution rate. We explain these observations with a model that highlights the role of the reorganization of interfacial water to accommodate charge transfer through the electric double layer, the energetics of which are controlled by how strongly water interacts with the interfacial field. The model is supported by laser-induced temperature-jump measurements. Our model sheds light on the origin of the slow kinetics for the hydrogen evolution reaction in alkaline media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of cyclic voltammetries for Pt(111) at various pH.
Figure 2: Impedance spectroscopy of the kinetics of H adsorption on Pt(111) at various pH.
Figure 3: Kinetics of hydrogen evolution and hydrogen adsorption on Pt(111) in the presence of Ni(OH)2.
Figure 4: Cyclic voltammetry and laser-induced temperature-jump measurements at pH 10.
Figure 5: Cyclic voltammetry and laser-induced temperature-jump measurements at pH 13.

Similar content being viewed by others

References

  1. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Google Scholar 

  2. Bockris, J. O. M. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment. Int. J. Hydrog. Energy 27, 731–740 (2002).

    Google Scholar 

  3. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Google Scholar 

  4. Ni, M., Leung, M.K. H., Leung, D.Y. C. & Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11, 401–425 (2007).

    Google Scholar 

  5. Barnhart, C. J. & Benson, S. M. On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environ. Sci. 6, 1083–1092 (2013).

    Google Scholar 

  6. Hashemi, S. M. H., Modestino, M. A. & Psaltis, D. A membrane-less electrolyzer for hydrogen production across the pH scale. Energy Environ. Sci. 8, 2003–2009 (2015).

    Google Scholar 

  7. Huang, Q., Ye, Z. & Xiao, X. Recent progress in photocathodes for hydrogen evolution. J. Mater. Chem. A 3, 15824–15837 (2015).

    Google Scholar 

  8. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Google Scholar 

  9. Calle-Vallejo, F., Díaz-Morales, O. A., Kolb, M. J. & Koper, M. T. M. Why is bulk thermochemistry a good descriptor for the electrocatalytic activity of transition metal oxides? ACS Catal. 5, 869–873 (2015).

    Google Scholar 

  10. Diaz-Morales, O., Ledezma-Yanez, I., Koper, M. T. M. & Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catalysis 5, 5380–5387 (2015).

    Google Scholar 

  11. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Google Scholar 

  12. Bockris, J. O. M. & Potter, E. C. The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 99, 169–186 (1952).

    Google Scholar 

  13. Conway, B. E. & Bai, L. State of adsorption and coverage by overpotential-deposited H in the H2 evolution reaction at Au and Pt. Electrochim. Acta 31, 1013–1024 (1986).

    Google Scholar 

  14. Schouten, K. J. P., van der Niet, M. J. T. C. & Koper, M. T. M. Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media. Phys. Chem. Chem. Phys. 12, 15217–15224 (2010).

    Google Scholar 

  15. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).

    Google Scholar 

  16. Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 51, 12495–12498 (2012).

    Google Scholar 

  17. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Google Scholar 

  18. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Google Scholar 

  19. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Google Scholar 

  20. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    Google Scholar 

  21. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    Google Scholar 

  22. Laursen, A. B. et al. Electrochemical hydrogen evolution: Sabatier’s principle and the volcano plot. J. Chem. Educ. 89, 1595–1599 (2012).

    Google Scholar 

  23. Skúlason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

    Google Scholar 

  24. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    Google Scholar 

  25. van der Niet, M. J. T. C., Garcia-Araez, N., Hernández, J., Feliu, J. M. & Koper, M. T. M. Water dissociation on well-defined platinum surfaces: the electrochemical perspective. Catal. Today 202, 105–113 (2013).

    Google Scholar 

  26. Morin, S., Dumont, H. & Conway, B. E. Evaluation of the effect of two-dimensional geometry of pt single-crystal faces on the kinetics of upd of h using impedance spectroscopy. J. Electroanal. Chem. 412, 39–52 (1996).

    Google Scholar 

  27. Gisbert, R., García, G. & Koper, M. T. M. Adsorption of phosphate species on poly-oriented Pt and Pt(1 1 1) electrodes over a wide range of pH. Electrochim. Acta 55, 7961–7968 (2010).

    Google Scholar 

  28. Oelgeklaus, R., Rose, J. & Baltruschat, H. On the rate of hydrogen and iodine adsorption on polycrystalline Pt and Pt(111). J. Electroanal. Chem. 376, 127–133 (1994).

    Google Scholar 

  29. Schuldiner, S. Hydrogen overvoltage on bright platinum: II. pH and salt effects in acid, neutral, and alkaline solutions. J. Electrochem. Soc. 101, 426–432 (1954).

    Google Scholar 

  30. Conway, B. E. & Bai, L. Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. Interfacial Electrochem. 198, 149–175 (1986).

    Google Scholar 

  31. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    Google Scholar 

  32. Seto, K., Iannelli, A., Love, B. & Lipkowski, J. The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes. J. Electroanal. Chem. Interfacial Electrochem. 226, 351–360 (1987).

    Google Scholar 

  33. Zheng, J., Yan, Y. & Xu, B. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics. J. Electrochem. Soc. 162, F1470–F1481 (2015).

    Google Scholar 

  34. Kita, H., Ye, S. & Gao, Y. Mass transfer effect in hydrogen evolution reaction on Pt single-crystal electrodes in acid solution. J. Electroanal. Chem. 334, 351–357 (1992).

    Google Scholar 

  35. Climent, V., García-Araez, N., Herrero, E. & Feliu, J. Potential of zero total charge of platinum single crystals: a local approach to stepped surfaces vicinal to Pt(111). Russ. J. Electrochem. 42, 1145–1160 (2006).

    Google Scholar 

  36. Garcia-Araez, N., Climent, V., Herrero, E., Feliu, J. M. & Lipkowski, J. Thermodynamic approach to the double layer capacity of a Pt(1 1 1) electrode in perchloric acid solutions. Electrochim. Acta 51, 3787–3793 (2006).

    Google Scholar 

  37. Rizo, R., Sitta, E., Herrero, E., Climent, V. & Feliu, J. M. Towards the understanding of the interfacial pH scale at Pt(1 1 1) electrodes. Electrochim. Acta 162, 138–145 (2015).

    Google Scholar 

  38. Cuesta, A. Measurement of the surface charge density of CO-saturated Pt(1 1 1) electrodes as a function of potential: the potential of zero charge of Pt(1 1 1). Surface Sci. 572, 11–22 (2004).

    Google Scholar 

  39. Sebastián, P., Sandoval, A. P., Climent, V. & Feliu, J. M. Study of the interface Pt(111)/ [Emmim][NTf2] using laser-induced temperature jump experiments. Electrochem. Commun. 55, 39–42 (2015).

    Google Scholar 

  40. Garcia-Araez, N., Climent, V. & Feliu, J. Potential-dependent water orientation on Pt(111), Pt(100), and Pt(110), as inferred from laser-pulsed experiments. Electrostatic and chemical effects. J. Phys. Chem. C 113, 9290–9304 (2009).

    Google Scholar 

  41. Climent, V., Coles, B. A. & Compton, R. G. Coulostatic potential transients induced by laser heating of a Pt(111) single-crystal electrode in aqueous acid solutions. Rate of hydrogen adsorption and potential of maximum entropy. J. Phys. Chem. B 106, 5988–5996 (2002).

    Google Scholar 

  42. Climent, V., Coles, B. A. & Compton, R. G. Laser-induced potential transients on a Au(111) single-crystal electrode. Determination of the potential of maximum entropy of double-layer formation. J. Phys. Chem. B 106, 5258–5265 (2002).

    Google Scholar 

  43. García-Aráez, N., Climent, V. & Feliu, J. M. Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments. J. Am. Chem. Soc. 130, 3824–3833 (2008).

    Google Scholar 

  44. Pecina, O. & Schmickler, W. A model for electrochemical proton-transfer reactions. Chem. Phys. 228, 265–277 (1998).

    Google Scholar 

  45. Rossmeisl, J., Chan, K., Skúlason, E., Björketun, M. E. & Tripkovic, V. On the pH dependence of electrochemical proton transfer barriers. Catal. Today 262, 36–40 (2016).

    Google Scholar 

  46. Rossmeisl, J., Chan, K., Ahmed, R., Tripkovic, V. & Bjorketun, M. E. pH in atomic scale simulations of electrochemical interfaces. Phys. Chem. Chem. Phys. 15, 10321–10325 (2013).

    Google Scholar 

  47. Climent, V., Garcia-Araez, N., Compton, R. G. & Feliu, J. M. Effect of deposited bismuth on the potential of maximum entropy of Pt(111) single-crystal electrodes. J. Phys. Chem. B 110, 21092–21100 (2006).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a TOP grant from the Netherlands Organization for Scientific Research (NWO). Support from MINECO (Spain) through project CTQ2013-44083-P is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

I.L.-Y., V.C., J.M.F. and M.T.M.K. designed the experiments. I.L.-Y. and W.D.Z.W. carried out the electrochemical experiments. I.L.-Y. and P.S.-P. carried out the laser-induced temperature-jump experiments. I.L.-Y. and M.T.M.K. co-wrote the manuscript and all authors edited the manuscript.

Corresponding author

Correspondence to Marc T. M. Koper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–7. (PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledezma-Yanez, I., Wallace, W., Sebastián-Pascual, P. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat Energy 2, 17031 (2017). https://doi.org/10.1038/nenergy.2017.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing