Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures

Abstract

Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-doped photocathodes by using a buried p–n junction. Advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III–V device.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Solar-to-hydrogen isoefficiency contour plot and bandgap versus lattice constant for various III–V alloys.
Figure 2: Structure of an IMM photocathode configured for water splitting with TEM cross-section of the active layers.
Figure 3: Structure of tandem devices and photoelectrochemical characterization.

References

  1. 1

    Nozik, A. J. Photoelectrochemical Cells. Phil. Trans. R. Soc. Lond. 295, 453–470 (1980).

    Article  Google Scholar 

  2. 2

    Nozik, A. J. Photoelectrochemistry: applications to solar energy conversion. Annu. Rev. Phys. Chem. 29, 189–222 (1978).

    Article  Google Scholar 

  3. 3

    Bard, A. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  Google Scholar 

  4. 4

    Bak, T., Nowotny, J., Rekas, M. & Sorrell, C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrog. Energy 27, 991–1022 (2002).

    Article  Google Scholar 

  5. 5

    Heller, A. Hydrogen-evolving solar cells. Science 223, 1141–1148 (1984).

    Article  Google Scholar 

  6. 6

    Jasinski, S. M., Kramer, D. A. & Ober, J. A. Fertilizers: Sustaining Global Food Supplies (USGS, 1999); http://pubs.usgs.gov/fs/fs155-99/fs155-99.pdf

  7. 7

    Halmann, M. M. Chemical Fixation of Carbon Dioxide: Methods for Recycling CO2 into Useful Products (CRC Press, 1993).

    Google Scholar 

  8. 8

    Nowotny, J., Sorrell, C. C., Sheppard, L. R. & Bak, T. Solar-hydrogen: environmentally safe fuel for the future. Int. J. Hydrog. Energy 30, 521–544 (2005).

    Article  Google Scholar 

  9. 9

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Vol. 11007, 1–44 (Department of Energy, 2015).

  10. 10

    Sathre, R. et al. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7, 3264–3278 (2014).

    Article  Google Scholar 

  11. 11

    Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Google Scholar 

  12. 12

    Döscher, H., Young, J. L., Geisz, J. F., Turner, J. A. & Deutsch, T. G. Solar to hydrogen efficiency: shining light on phoelectrochemical device performance. Energy Environ. Sci. 9, 74–80 (2015).

    Article  Google Scholar 

  13. 13

    Murphy, A. B. et al. Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999–2017 (2006).

    Article  Google Scholar 

  14. 14

    Ager, J. W. III, Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

    Article  Google Scholar 

  15. 15

    Parkinson, B. On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984).

    Article  Google Scholar 

  16. 16

    Weber, M. F. & Dignam, M. J. Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 131, 1258–1265 (1984).

    Article  Google Scholar 

  17. 17

    Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985).

    Article  Google Scholar 

  18. 18

    Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  Google Scholar 

  19. 19

    Hu, S., Xiang, C., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013).

    Article  Google Scholar 

  20. 20

    Döscher, H., Geisz, J. F., Deutsch, T. G. & Turner, J. A. Sunlight absorption in water—efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7, 2951–2956 (2014).

    Article  Google Scholar 

  21. 21

    Geisz, J. F. et al. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Appl. Phys. Lett. 91, 23502 (2007).

    Article  Google Scholar 

  22. 22

    May, M. M., Lewerenz, H.-J., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015).

    Article  Google Scholar 

  23. 23

    Steiner, M. A. et al. Optical enhancement of the open-circuit voltage in high quality GaAs solar cells. J. Appl. Phys. 113, 123109 (2013).

    Article  Google Scholar 

  24. 24

    Shahrjerdi, D. et al. High-efficiency thin-film InGaP/(In)GaAs/Ge multijunction solar cells enabled by controlled spalling technology. Appl. Phys. Lett. 100, 53901 (2012).

    Article  Google Scholar 

  25. 25

    Schermer, J. J. et al. Epitaxial lift-off for large area thin film III/V devices. Phys. Status Solidi 202, 501–508 (2005).

    Article  Google Scholar 

  26. 26

    Smeenk, N. J. et al. Arsenic formation on GaAs during etching in HF solutions: relevance for the epitaxial lift-off process. ECS J. Solid State Sci. Technol. 2, P58–P65 (2012).

    Article  Google Scholar 

  27. 27

    Woodhouse, M. & Goodrich, A. A Manufacturing Cost Analysis Relevant to Single- and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs Grown on Czochralski Silicon NREL/PR-6A20-60126 (NREL, 2013).

  28. 28

    Deutsch, T. et al. Stable photoelectrode surfaces and methods. US patent 2014/0332374 A1 (2014).

  29. 29

    Kemppainen, E. et al. Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ. Sci. 8, 2991–2999 (2015).

    Article  Google Scholar 

  30. 30

    France, R. M. et al. Reduction of crosshatch roughness and threading dislocation density in metamorphic GaInP buffers and GaInAs solar cells. J. Appl. Phys. 111, 103528 (2012).

    Article  Google Scholar 

  31. 31

    France, R. M., Dimroth, F., Grassman, T. J. & King, R. R. Metamorphic epitaxy for multijunction solar cells. MRS Bull. 41, 202–209 (2016).

    Article  Google Scholar 

  32. 32

    Garcia, I. et al. Metamorphic III–V solar cells: recent progress and potential. IEEE J. Photovolt. 6, 366–373 (2016).

    Article  Google Scholar 

  33. 33

    Osterwald, C. R. Translation of device performance measurements to reference conditions. Sol. Cells 18, 269–279 (1986).

    Article  Google Scholar 

  34. 34

    Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface ASTM G173-03 (ASTM International, 2012); www.astm.org

  35. 35

    Bansal, A. & Turner, J. Suppression of band edge migration at the p-GaInP2/H2O interface under illumination via catalysis. J. Phys. Chem. B 104, 6591–6598 (2000).

    Article  Google Scholar 

  36. 36

    Boettcher, S. W. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 (2011).

    Article  Google Scholar 

  37. 37

    Heller, A., Miller, B., Lewerenz, H. J. & Bachmann, K. J. An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VCl3-VCl2-HCl/C. J. Am. Chem. Soc. 102, 6555–6556 (1980).

    Article  Google Scholar 

  38. 38

    Young, J. L., Steirer, K. X., Dzara, M. J., Turner, J. A. & Deutsch, T. G. Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte. J. Mater. Chem. A 4, 2831–2836 (2016).

    Article  Google Scholar 

  39. 39

    Jain, N. et al. Development of Lattice-Matched 1.7 eV GaInAsP Solar Cells grown on GaAs by MOVPE. In 43rd IEEE Photovolt. Spec. Conf. 2–7 (IEEE, 2016).

  40. 40

    Standard Test Method for Calibration of Primary Non-Concentrator Terrestrial Photovoltaic Reference Cells Using a Tabular Spectrum ASTM E1125-99 1–5 (ASTM International, 1999).

  41. 41

    Osterwald, C. R. Translation of device performance measurements to reference conditions. Sol. Cells 18, 269–279 (1986).

    Article  Google Scholar 

  42. 42

    Denton, A. R. & Ashcroft, N. W. Vegards law. Phys. Rev. A 43, 3161–3164 (1991).

    Article  Google Scholar 

  43. 43

    Vurgaftman, I., Meyer, J. R. & Ram-Mohan, L. R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001).

    Article  Google Scholar 

  44. 44

    Dameron, A. A. et al. Pt–Ru alloyed fuel cell catalysts sputtered from a single alloyed target. ACS Catal. 1, 1307–1315 (2011).

    Article  Google Scholar 

  45. 45

    Nielander, A. C., Shaner, M. R., Papadantonakis, K. M., Francis, S. A. & Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 8, 16–25 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank W. Olavarria for operating the epitaxy system, M. Young for processing samples, A. Norman for the HAADF-STEM, and D. Friedman, J. Geisz and S. Ward for valuable discussions. J.L.Y. acknowledges support by a National Science Foundation Graduate Research Fellowship (Grant No. DGE1144083), H.D. by an EU Marie Curie Fellowship (IOF no. 300971), and all authors by the US Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy, Fuel Cell Technologies Office under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory.

Author information

Affiliations

Authors

Contributions

J.L.Y. performed the characterizations, developed the benchmarking procedures, and wrote the manuscript. T.G.D., J.A.T., J.L.Y. and H.D. developed the concept of IMM water splitting while T.G.D., J.A.T., J.L.Y., H.D. and M.A.S. participated in design of experiments and interpretation of results. H.D. modelled PEC tandem device efficiencies and characterized some initial proof-of-principle devices. M.A.S. designed the semiconductor growths and performed the semiconductor photolithography and isolation. R.M.F. developed the transparent graded buffers and metamorphic subcells.

Corresponding author

Correspondence to Todd G. Deutsch.

Ethics declarations

Competing interests

T.G.D., J.A.T., J.L.Y., H.D., M.A.S. and R.M.F. have a provisional patent (No. US 2016/0281247/A1) on file with the US Patent and Trademark Office that is based on this work.

Supplementary information

Supplementary Information

Supplementary Figures 1–9; Supplementary Table 1; Supplementary Note 1; Supplementary References (PDF 1330 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Young, J., Steiner, M., Döscher, H. et al. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat Energy 2, 17028 (2017). https://doi.org/10.1038/nenergy.2017.28

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing