The underestimated potential of solar energy to mitigate climate change

Abstract

The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30–50% of electricity in competitive markets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Growth in PV capacity and scenario projections.
Figure 2: Rapid decline in levelized cost of PV electricity.
Figure 3: Updating the integrated assessment model REMIND with recent price information.

References

  1. 1

    Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there — energy technology transformation pathways in the EMF27 scenarios. Climatic Change 123, 369–382 (2014).

    Article  Google Scholar 

  2. 2

    Edenhofer, O. et al. Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 33–108 (Cambridge Univ. Press, 2014).

    Google Scholar 

  3. 3

    IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).

    Google Scholar 

  4. 4

    Edenhofer, O., Seyboth, K., Creutzig, F. & Schlömer, S. On the sustainability of renewable energy sources. Ann. Rev. Environ. Resour. 38, 169–200 (2013).

    Article  Google Scholar 

  5. 5

    Luderer, G. et al. The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Climatic Change 123, 427–441 (2014).

    Article  Google Scholar 

  6. 6

    Breyer, C. et al. On the role of solar photovoltaics in global energy transition scenarios. Progr. Photovoltaics 25, 727–745 (2017).

    Article  Google Scholar 

  7. 7

    Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

    Article  Google Scholar 

  8. 8

    Graβl, H. et al. Welt im Wandel: Energiewende zur Nachhaltigkeit (WBGU, Springer, 2003).

    Google Scholar 

  9. 9

    Pietzcker, R. C., Stetter, D., Manger, S. & Luderer, G. Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power. Appl. Energy 135, 704–720 (2014).

    Article  Google Scholar 

  10. 10

    Arvizu, D. et al. Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) 34–212 (IPCC, Cambridge Univ. Press, 2011).

    Google Scholar 

  11. 11

    World Energy Outlook 2014 (IEA, Paris, 2014).

  12. 12

    Renewables Global Status Report 2017 (REN21 Secretariat, 2017).

  13. 13

    International Technology Roadmap for Photovoltaic Results 2016 (VDMA Photovoltaic Equipment, 2017).

  14. 14

    World Energy Outlook 2009 (IEA, 2009).

  15. 15

    World Energy Outlook 2006 (IEA, 2006).

  16. 16

    World Energy Outlook 2012 (IEA, 2012).

  17. 17

    A Sustainable World Energy Outlook 2007 (Greenpeace, 2007).

  18. 18

    A Sustainable World Energy Outlook 2008 (Greenpeace, 2008).

  19. 19

    A Sustainable World Energy Outlook 2010 (Greenpeace, 2010).

  20. 20

    A Sustainable World Energy Outlook 2012 (Greenpeace, 2012).

  21. 21

    Kriegler, E. et al. What does the 2 degree C target imply for a global climate agreement in 2020? The LIMITS study on durban platform scenario. Climatic Change Econ. 4, 1340008 (2013).

    Article  Google Scholar 

  22. 22

    Tavoni, M. et al. The distribution of the major economies’ effort in the Durban platform scenarios. Climatic Change Econ. 4, 1340009 (2013).

    Article  Google Scholar 

  23. 23

    Kriegler, E. et al. Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy. Technol. Forecast. Soc. Change 90A, 24–44 (2015).

    Article  Google Scholar 

  24. 24

    Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90A, 8–23 (2015).

    Article  Google Scholar 

  25. 25

    Hultman, N. E. & Koomey, J. G. The risk of surprise in energy technology costs. Environ. Res. Lett. 2, 034002 (2007).

    Article  Google Scholar 

  26. 26

    Dale, L., Antinori, C., McNeil, M., McMahon, J. E. & Fujita, K. S. Retrospective evaluation of appliance price trends. Energy Policy 37, 597–605 (2009).

    Article  Google Scholar 

  27. 27

    Craig, P. P., Gadgil, A. & Koomey, J. G. What can history teach us: a retrospective examination of long-term energy forecasts for the United States. Ann. Rev. Energy Environ. 27, 83–118 (2002).

    Article  Google Scholar 

  28. 28

    Ackerman, F., DeCanio, S. J., Howarth, R. B. & Sheeran, K. Limitations of integrated assessment models of climate change. Climatic Change 95, 297–315 (2009).

    Article  Google Scholar 

  29. 29

    Scher, I. & Koomey, J. G. Is accurate forecasting of economic systems possible? Climatic Change 104, 473–479 (2011).

    Article  Google Scholar 

  30. 30

    Gillingham, K. et al. Modeling Uncertainty in Climate Change: A Multi-Model Comparison (National Bureau of Economic Research, 2015).

    Google Scholar 

  31. 31

    Ma, T., Grubler, A. & Nakamori, Y. Modeling technology adoptions for sustainable development under increasing returns, uncertainty, and heterogeneous agents. Eur. J. Oper. Res. 195, 296–306 (2009).

    MathSciNet  Article  Google Scholar 

  32. 32

    Bosetti, V., Carraro, C., Massetti, E., Sgobbi, A. & Tavoni, M. Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations. Resour. Energy Econ. 31, 123–137 (2009).

    Article  Google Scholar 

  33. 33

    Pillai, U. Drivers of cost reduction in solar photovoltaics. Energy Econ. 50, 286–293 (2015).

    Article  Google Scholar 

  34. 34

    Sund, S. & Rehdanz, K. Consumer's willingness to pay for green electricity: a meta-analysis of the literature. Energ. Econ. 51, 1–8 (2015).

    Article  Google Scholar 

  35. 35

    Borchers, A. M., Duke, J. M. & Parsons, G. R. Does willingness to pay for green energy differ by source? Energy Policy 35, 3327–3334 (2007).

    Article  Google Scholar 

  36. 36

    Wirth, H. Recent Facts about Photovoltaics in Germany (Fraunhofer ISE, 2017).

  37. 37

    Hauser, E. et al. Nutzeneffekte von Bürgerenergie (Greenpeace Energy, Bündnis Bürgerenergie e.V., Institut für ZukunftsEnergieSysteme, 2015).

    Google Scholar 

  38. 38

    Global Market Outlook (Solar Power Europe, 2015).

  39. 39

    Hirth, L. The optimal share of variable renewables: how the variability of wind and solar power affects their welfare-optimal deployment. Energy J. 36, 149–184 (2015).

    Article  Google Scholar 

  40. 40

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

    Article  Google Scholar 

  41. 41

    Bertram, C. et al. Complementing carbon prices with technology policies to keep climate targets within reach. Nat. Climatic Change 5, 235–239 (2015).

    Article  Google Scholar 

  42. 42

    Nemet, G. F. Interim monitoring of cost dynamics for publicly supported energy technologies. Energy Policy 37, 825–835 (2009).

    Article  Google Scholar 

  43. 43

    McDonald, A. & Schrattenholzer, L. Learning rates for energy technologies. Energy Policy 29, 255–261 (2001).

    Article  Google Scholar 

  44. 44

    Metayer, M., Breyer, C. & Fell, H.-J. The projections for the future and quality in the past of the World Energy Outlook for solar PV and other renewable energy technologies. In 31st Eur. PV Solar Energy Conf. Exhib.http://doi.org/cbwn (EU PVSEC, 2015).

  45. 45

    Breyer, C. & Gerlach, A. Global overview on grid-parity: global overview on grid-parity. Prog. Photovolt. Res. Appl. 21, 121–136 (2013).

    Article  Google Scholar 

  46. 46

    Renewable Power Generation Costs in 2014 (IRENA, 2015).

  47. 47

    Bolinger, M., Weaver, S. & Zuboy, J. Is $50/MWh solar for real? Falling project prices and rising capacity factors drive utility-scale PV toward economic competitiveness. Prog. Photovolt. Res. Appl. 23, 1847–1856 (2015).

    Article  Google Scholar 

  48. 48

    Romm, J. Stunning drops in solar and wind costs turn global power market upside down. ThinkProgress (6 April 2017); https://thinkprogress.org/renewables-cheapest-new-power-globally-74910c78bbbe

  49. 49

    Haegel, N. M. et al. Terawatt-scale photovoltaics: trajectories and challenges. Science 356, 141–143 (2017).

    Article  Google Scholar 

  50. 50

    Rubin, E. S., Davison, J. E. & Herzog, H. J. The cost of CO2 capture and storage. Int. J. Greenhouse Gas Control 40, 378–400 (2015).

    Article  Google Scholar 

  51. 51

    Grubler, A. The costs of the French nuclear scale-up: A case of negative learning by doing. Energy Policy 38, 5174–5188 (2010).

    Article  Google Scholar 

  52. 52

    Ondraczek, J., Komendantova, N. & Patt, A. G. WACC the dog: the effect of financing costs on the levelized cost of solar PV power. Renew. Energy 75, 888–898 (2015).

    Article  Google Scholar 

  53. 53

    Technology Roadmap: Solar Photovoltaic Energy (OECD/IEA, 2014).

  54. 54

    Creutzig, F. et al. Catching two European birds with one renewable stone: mitigating climate change and Eurozone crisis by an energy transition. Renew. Sustain. Energy Rev. 38, 1015–1028 (2014).

    Article  Google Scholar 

  55. 55

    Zweibel, K. Should solar photovoltaics be deployed sooner because of long operating life at low, predictable cost? Energy Policy 38, 7519–7530 (2010).

    Article  Google Scholar 

  56. 56

    Raman, P., Murali, J., Sakthivadivel, D. & Vigneswaran, V. S. Opportunities and challenges in setting up solar photo voltaic based micro grids for electrification in rural areas of India. Renew. Sustain. Energy Rev. 16, 3320–3325 (2012).

    Article  Google Scholar 

  57. 57

    Chaurey, A. & Kandpal, T. C. A techno-economic comparison of rural electrification based on solar home systems and PV microgrids. Energy Policy 38, 3118–3129 (2010).

    Article  Google Scholar 

  58. 58

    Yaqoot, M., Diwan, P. & Kandpal, T. C. Review of barriers to the dissemination of decentralized renewable energy systems. Renew. Sustain. Energy Rev. 58, 477–490 (2016).

    Article  Google Scholar 

  59. 59

    IEA. The Power of Transformation: Wind, Sun and the Economics of Flexible Power Systems (OECD, 2014).

  60. 60

    Sivaram, V. & Kann, S. Solar power needs a more ambitious cost target. Nat. Energy 1, 16036 (2016).

    Article  Google Scholar 

  61. 61

    Mai, T., Sandor, D., Wiser, R. & Schneider, T. Renewable Electricity Futures Study: Executive Summary (National Renewable Energy Laboratory, 2012).

    Google Scholar 

  62. 62

    Jacobson, M. Z., Delucchi, M. A., Cameron, M. A. & Frew, B. A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl Acad. Sci. USA 112, 15060–15065 (2015).

    Article  Google Scholar 

  63. 63

    Bogdanov, D. & Breyer, C. North-East Asian Super Grid for 100% renewable energy supply: optimal mix of energy technologies for electricity, gas and heat supply options. Energy Convers. Manag. 112, 176–190 (2016).

    Article  Google Scholar 

  64. 64

    Scholz, Y., Gils, H. C. & Pietzcker, R. Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares. Energy Econ. 64, 568–582 (2016).

    Article  Google Scholar 

  65. 65

    Mills, A. D. & Wiser, R. H. Strategies to mitigate declines in the economic value of wind and solar at high penetration in California. Appl. Energy 147, 269–278 (2015).

    Article  Google Scholar 

  66. 66

    Heide, D., Greiner, M., von Bremen, L. & Hoffmann, C. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation. Renew. Energy 36, 2515–2523 (2011).

    Article  Google Scholar 

  67. 67

    Ueckerdt, F. et al. Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model. Energy Econ. 42, 316–330 (2016).

    Google Scholar 

  68. 68

    Wilson, C., Grubler, A., Bauer, N., Krey, V. & Riahi, K. Future capacity growth of energy technologies: are scenarios consistent with historical evidence? Climatic Change 118, 381–395 (2013).

    Article  Google Scholar 

  69. 69

    Pietzcker, R. C. et al. System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Econ. 64, 583–599 (2017).

    Article  Google Scholar 

  70. 70

    Lechtenböhmer, S., Nilsson, L. J., Ahman, M. & Schneider, C. Decarbonising the energy intensive basic materials industry through electrification — implications for future EU electricity demand. Energy 115, 1623–1631 (2016).

    Article  Google Scholar 

  71. 71

    McCollum, D., Krey, V., Kolp, P., Nagai, Y. & Riahi, K. Transport electrification: a key element for energy system transformation and climate stabilization. Climatic Change 123, 651–664 (2014).

    Article  Google Scholar 

  72. 72

    Creutzig, F. Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36, 341–360 (2016).

    Article  Google Scholar 

  73. 73

    Snapshot of Global Photovoltaic Markets (IEA, 2016).

  74. 74

    Letting in the Light: How Solar Photovoltaics will Revolutionise the Electricity System (IRENA, 2016).

  75. 75

    Renewables Global Status Report 2015 (REN21 Secretariat, 2015).

  76. 76

    A Sustainable World Energy Outlook 2015 (Greenpeace, 2015).

  77. 77

    World Energy Outlook 2004 (IEA, 2004).

  78. 78

    World Energy Outlook 2002 (IEA, 2002).

  79. 79

    Klein, D. et al. The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Climatic Change 123, 705–718 (2014).

    Article  Google Scholar 

  80. 80

    Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

    Article  Google Scholar 

  81. 81

    Luderer, G. et al. Description of the Remind Model (Version 1.6) (Social Science Research Network, 2015).

    Google Scholar 

  82. 82

    Pietzcker, R. C. et al. System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches. Energy Econ. 64, 583–599 (2017).

    Article  Google Scholar 

  83. 83

    The Power to Change: Solar and Wind Cost Reduction Potential to 2025 (IRENA, 2016).

  84. 84

    Mayer, J. N., Simon, P., Philipps, N. S. H., Schlegl, T. & Senkpiel, C. Current and Future Cost of Photovoltaics (Fraunhofer ISE, Agora Energiewende Freibg., 2015).

    Google Scholar 

  85. 85

    Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim Change 5, 329–332 (2015).

    Article  Google Scholar 

  86. 86

    Becker, S., Rodriguez, R. A., Andresen, G. B., Schramm, S. & Greiner, M. Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply. Energy 64, 404–418 (2014).

    Article  Google Scholar 

  87. 87

    Gils, H. C. Assessment of the theoretical demand response potential in Europe. Energy 67, 1–18 (2014).

    Article  Google Scholar 

  88. 88

    Hirth, L. & Ziegenhagen, I. Balancing power and variable renewables: three links. Renew. Sustain. Energy Rev. 50, 1035–1051 (2015).

    Article  Google Scholar 

  89. 89

    Williams, J. H. et al. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335, 53–59 (2012).

    Article  Google Scholar 

  90. 90

    Mathiesen, B. V. et al. Smart energy systems for coherent 100% renewable energy and transport solutions. Appl. Energy 145, 139–154 (2015).

    Article  Google Scholar 

  91. 91

    Projected Cost of Generating Electricity (IEA, 2015).

  92. 92

    Lazard's Levelized Cost of Energy Analysis — version 9.0 (Lazard, 2015).

  93. 93

    Vartiainen, E., Masson, G. & Breyer, C. PV LCOE in Europe 2015–2050. In 31st Eur. Photovolt. Sol. Energy Conf.http://doi.org/cbwp (EU PVSEC, 2015).

  94. 94

    Sargsyan, G. Why Zambia's 6 cents is more significant than Dubai's 3 cents. Energy for All (6 July 2016).

  95. 95

    Monitoringbericht 2016 (Bundesnetzagentur/Bundeskartellamt, 2016).

  96. 96

    Barbose, G. et al. Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States (Lawrence Berkeley National Laboratory, 2015).

    Google Scholar 

  97. 97

    Collier, P. & Venables, A. J. Greening Africa? Technologies, endowments and the latecomer effect. Energy Econ. 34, S75–S84 (2012).

    Article  Google Scholar 

  98. 98

    Funkhouser, E., Blackburn, G., Magee, C. & Rai, V. Business model innovations for deploying distributed generation: the emerging landscape of community solar in the US. Energy Res. Soc. Sci. 10, 90–101 (2015).

    Article  Google Scholar 

  99. 99

    Dean, N. Solar photovoltaics: In it together. Nat. Energy 1, 15023 (2016).

    Article  Google Scholar 

  100. 100

    Rai, V. & Robinson, S. A. Effective information channels for reducing costs of environmentally-friendly technologies: evidence from residential PV markets. Environ. Res. Lett. 8, 014044 (2013).

    Article  Google Scholar 

  101. 101

    Fuller, M. C., Portis, S. C. & Kammen, D. M. Toward a low-carbon economy: municipal financing for energy efficiency and solar power. Environ. Sci. Policy Sustain. Dev. 51, 22–33 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union's Seventh Programme FP7/2007-2013 under grant agreement no. 308329 (ADVANCE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felix Creutzig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Note 1

Detailed electricity sector modeling with high shares of PV and wind (PDF 232 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Creutzig, F., Agoston, P., Goldschmidt, J. et al. The underestimated potential of solar energy to mitigate climate change. Nat Energy 2, 17140 (2017). https://doi.org/10.1038/nenergy.2017.140

Download citation

Further reading