Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites

Abstract

Perovskite solar cells are remarkably efficient; however, they are prone to degradation in water, oxygen and ultraviolet light. Cation engineering in 3D perovskite absorbers has led to reduced degradation. Alternatively, 2D Ruddlesden–Popper layered perovskites exhibit improved stability, but have not delivered efficient solar cells so far. Here, we introduce n-butylammonium cations into a mixed-cation lead mixed-halide FA0.83Cs0.17Pb(IyBr1−y)3 3D perovskite. We observe the formation of 2D perovskite platelets, interspersed between highly orientated 3D perovskite grains, which suppress non-radiative charge recombination. We investigate the relationship between thin-film composition, crystal alignment and device performance. Solar cells with an optimal butylammonium content exhibit average stabilized power conversion efficiency of 17.5 ± 1.3% with a 1.61-eV-bandgap perovskite and 15.8 ± 0.8% with a 1.72-eV-bandgap perovskite. The stability under simulated sunlight is also enhanced. Cells sustain 80% of their ‘post burn-in’ efficiency after 1,000 h in air, and close to 4,000 h when encapsulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology and crystal phases.
Figure 2: BA-enhanced 3D perovskite crystalline growth.
Figure 3: 2D–3D perovskite heterostructure.
Figure 4: Device performances of the BA/FA/Cs perovskite solar cells.
Figure 5: Device stability.

Similar content being viewed by others

References

  1. Ogomi, Y. et al. CH3NH3Snx Pb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

    Article  Google Scholar 

  2. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. Il. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  Google Scholar 

  3. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  Google Scholar 

  4. Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    Article  Google Scholar 

  5. Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  Google Scholar 

  6. Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    Article  Google Scholar 

  7. Yang, W. S., Park, B., Jung, E. H. & Jeon, N. J. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  Google Scholar 

  8. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  Google Scholar 

  9. Pearson, A. J. et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3−xClx perovskite solar cells: kinetics and mechanisms. Adv. Energy Mater. 6, 1600014 (2016).

    Article  Google Scholar 

  10. Wang, Z. et al. Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Adv. Mater. 29, 1604186 (2016).

    Article  Google Scholar 

  11. Aristidou, N. et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Edn 54, 8208–8212 (2015).

    Article  Google Scholar 

  12. Leguy, A. M. A. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015).

    Article  Google Scholar 

  13. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  14. Misra, R. K. et al. Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 6, 326–330 (2015).

    Article  Google Scholar 

  15. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  Google Scholar 

  16. Yi, C. et al. Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    Article  Google Scholar 

  17. Lee, J. W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  18. Muljarov, E. A., Tikhodeev, S. G., Gippius, N. A. & Ishihara, T. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys. Rev. B 51, 14370–14378 (1995).

    Article  Google Scholar 

  19. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  Google Scholar 

  20. Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Edn 53, 11232–11235 (2014).

    Article  Google Scholar 

  21. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    Article  Google Scholar 

  22. Yao, K., Wang, X., Xu, Y. X., Li, F. & Zhou, L. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem. Mater. 28, 3131–3138 (2016).

    Article  Google Scholar 

  23. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  Google Scholar 

  24. Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    Article  Google Scholar 

  25. Milot, R. L. et al. Charge-carrier dynamics in 2D hybrid metal-halide perovskites. Nano Lett. 16, 7001–7007 (2016).

    Article  Google Scholar 

  26. Liao, Y. et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017).

    Article  Google Scholar 

  27. Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green light emission. Nano Lett. 17, 3701–3709 (2017).

    Article  Google Scholar 

  28. Li, N. et al. Mixed cation FAxPEA1−xPbI3 with enhanced phase and ambient stability toward high-performance perovskite solar cells. Adv. Energy Mater. 7, 1601307 (2017).

    Article  Google Scholar 

  29. He, B. B., Preckwinkel, U. & Smith, K. L. Comparison between conventional and two-dimensional XRD. Adv. X-Ray Anal. 46, 37–42 (2003).

    Google Scholar 

  30. Tan, K. W. et al. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 8, 4730–4739 (2014).

    Article  Google Scholar 

  31. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11, 872–877 (2016).

    Article  Google Scholar 

  32. Ong, H. C., Zhu, A. X. E. & Du, G. T. Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films. Appl. Phys. Lett. 80, 941–943 (2002).

    Article  Google Scholar 

  33. Ko, H. J. et al. Improvement of the quality of ZnO substrates by annealing. J. Cryst. Growth 269, 493–498 (2004).

    Article  Google Scholar 

  34. Nagao, K. & Kagami, E. X-ray thin film measurement techniques: VII. Pole figure measurement. Rigaku J. 27, 6–14 (2011).

    Google Scholar 

  35. Kieslich, G. et al. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014).

    Article  Google Scholar 

  36. Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).

    Article  Google Scholar 

  37. Safdari, M. et al. Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells. J. Mater. Chem. A 4, 15638–15646 (2016).

    Article  Google Scholar 

  38. Morozov, S. V. et al. Type II-type I conversion of GaAs/GaAsSb heterostructure energy spectrum under optical pumping. J. Appl. Phys. 113, 163107 (2013).

    Article  Google Scholar 

  39. Van Reenen, S., Kemerink, M. & Snaith, H. J. Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015).

    Article  Google Scholar 

  40. Belisle, R. A. et al. Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths. Energy Environ. Sci. 10, 192–204 (2017).

    Article  Google Scholar 

  41. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article  Google Scholar 

  42. Li, W. et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9, 490–498 (2016).

    Article  Google Scholar 

  43. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    Article  Google Scholar 

  44. Peters, C. H. et al. High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491–494 (2011).

    Article  Google Scholar 

  45. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  Google Scholar 

  46. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  Google Scholar 

  47. Wang, Q. et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 10, 516–522 (2017).

    Article  Google Scholar 

  48. Zhang, Y. et al. Two-step grain-growth kinetics of sub-7 nm SnO2 nanocrystal under hydrothermal condition. J. Phys. Chem. C 119, 19505–19512 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was part-funded by EPSRC, UK, the European Union Seventh Framework Program under grant agreement number 604032 of the MESO project and AFOSR through project FA9550-15-1-0115. We thank A. A. Haghighirad for discussions concerning XRD analysis, and D. P. McMeekin for discussion concerning device fabrication and film composition analysis. We would also like to thank M. T. Klug and R. Xiang for helping with illustrations.

Author information

Authors and Affiliations

Authors

Contributions

H.J.S. and Z.W. conceived the project. Z.W. designed the experiments, and fabricated the devices and thin-film samples. Q.L. performed optical spectroscopy and EQE measurements and analysed the data. Z.W. and F.P.C. performed the XRD measurement and analysed the XRD data. N.S. performed SEM measurement and contributed to device fabrication. L.M.H. supervised the optical spectroscopy experiments. H.J.S. supervised the whole project. Z.W. wrote the first draft of the paper. All authors discussed the results and contributed to the writing of the paper.

Corresponding author

Correspondence to Henry J. Snaith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–13 and Supplementary References. (PDF 1730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Lin, Q., Chmiel, F. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing