Bioinspired catalytic materials for energy-relevant conversions

Article metrics

The structure of active sites of enzymes involved in bioenergetic processes can inspire design of active, stable and cost-effective catalysts for renewable-energy technologies. For these materials to reach maturity, the benefits of bioinspired systems must be combined with practical technological requirements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structures of metallo-porphyrin-based ORR catalysts.
Figure 2: Design of efficient bioinspired nanomaterials mimicking the active site of hydrogenases.
Figure 3

References

  1. 1

    Ozin, G. A. Energy Environ. Sci. 8, 1682–1684 (2015).

  2. 2

    Gordon, R. B., Bertram, M. & Graedel, T. E. Proc. Natl Acad. Sci. USA 103, 1209–1214 (2006).

  3. 3

    Kongkanand, A. & Mathias, M. F. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

  4. 4

    Collman, J. P. et al. Science 315, 1565–1568 (2007).

  5. 5

    Chatterjee, S., Sengupta, K., Karlin, K. D. & Dey, A. J. Am. Chem. Soc. 137, 12897–12905 (2015).

  6. 6

    Hijazi, I. et al. J. Am. Chem. Soc. 136, 6348–6354 (2014).

  7. 7

    Zitolo, A. et al. Nat. Mater. 14, 937–942 (2015).

  8. 8

    Gasteiger, H. A. & Markovic, N. M. Science 324, 48–49 (2009).

  9. 9

    Benner, S. A., Ellington, A. D. & Tauer, A. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989).

  10. 10

    Armstrong, F. A. & Hirst, J. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

  11. 11

    Brazzolotto, D. et al. Nat. Chem. 8, 1054–1060 (2016).

  12. 12

    Simmons, T. R., Berggren, G., Bacchi, M., Fontecave, M. & Artero, V. Coord. Chem. Rev. 270–271, 127–150 (2014).

  13. 13

    Priyadarshani, N. et al. Am. Chem. Soc. Catal. 6, 6037–6049 (2016).

  14. 14

    Ginovska-Pangovska, B., Dutta, A., Reback, M. L., Linehan, J. C. & Shaw, W. J. Acc. Chem. Res. 47, 2621–2630 (2014).

  15. 15

    DuBois, D. L. Inorg. Chem. 53, 3935–3960 (2014).

  16. 16

    Tran, P. D. et al. Angew. Chem. Int. Edn 50, 1371–1374 (2011).

  17. 17

    Le Goff, A. et al. Science 326, 1384–1387 (2009).

  18. 18

    Gentil, S. et al. Angew. Chem. Int. Edn 56, 1845–1849 (2017).

  19. 19

    Rodríguez-Maciá, P. et al. Electroanalysis 28, 2452–2458 (2016).

  20. 20

    Rodriguez-Macia, P. et al. Angew. Chem. Int. Edn 54, 12303–12307 (2015).

  21. 21

    Huan, T. N. et al. Energy Environ. Sci. 9, 940–947 (2016).

  22. 22

    Tran, P. D. et al. Chem. Sci. 6, 2050–2053 (2015).

  23. 23

    Zaharieva, I. et al. Energy Environ. Sci. 4, 2400–2408 (2011).

  24. 24

    Liu, J. et al. Proc. Natl Acad. Sci. USA 113, 5530–5535 (2016).

  25. 25

    Tran, P. D. et al. Nat. Mater. 15, 640–646 (2016).

  26. 26

    Kanan, M. W. et al. J. Am. Chem. Soc. 132, 13692–13701 (2010).

  27. 27

    Azcarate, I., Costentin, C., Robert, M. & Savéant, J.-M. J. Am. Chem. Soc. 138, 16639–16644 (2016).

  28. 28

    Huan, T. N. et al. Am. Chem. Soc. Catal. 7, 1520–1525 (2017).

  29. 29

    Lutterman, D. A., Surendranath, Y. & Nocera, D. G. J. Am. Chem. Soc. 131, 3838–3839 (2009).

  30. 30

    Barile, C. J. et al. Nat. Mater. 13, 619–623 (2014).

  31. 31

    Yang, P. & Tarascon, J.-M. Nat. Mater. 11, 560–563 (2012).

  32. 32

    Steele, B. C. H. & Heinzel, A. Nature 414, 345–352 (2001).

  33. 33

    Vesborg, P. C. K. & Jaramillo, T. F. R. Soc. Chem. Adv. 2, 7933–7947 (2012).

  34. 34

    Gebel, G. & Diat, O. Structure des Membranes Ionomères. Institut Nanosciences et Cryogéniehttp://go.nature.com/2vkLNpm (2011).

Download references

Author information

Correspondence to Vincent Artero.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artero, V. Bioinspired catalytic materials for energy-relevant conversions. Nat Energy 2, 17131 (2017) doi:10.1038/nenergy.2017.131

Download citation

Further reading