Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

Abstract

Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI–LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75 mAh cm−2, a cyclability of 97.1% capacity retention after 500 cycles along with very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm−2. The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical behaviour of Li||NMC batteries using different carbonate-based electrolytes.
Figure 2: Rate performance of Li||NMC batteries using various electrolytes at 30 C.
Figure 3: Effects of additive content and testing conditions.
Figure 4: Morphological and interfacial evolution of Li metal anodes.
Figure 5: Characterization of the components of SEI produced on cycled Li metal anodes.
Figure 6: Molecular orbital energies and evolution of SEI layer compositions.

Similar content being viewed by others

References

  1. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  Google Scholar 

  2. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  Google Scholar 

  3. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  Google Scholar 

  4. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).

    Article  Google Scholar 

  5. Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    Article  Google Scholar 

  6. Zhou, D. et al. SiO2 Hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater. 6, 201502214 (2016).

    Google Scholar 

  7. Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

    Article  Google Scholar 

  8. Basile, A., Bhatt, A. I. & O’Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, 11794 (2016).

    Article  Google Scholar 

  9. Bhatt, A. I., Best, A. S., Huang, J. & Hollenkamp, A. F. Application of the N-propyl-N-methyl-pyrrolidinium bis(fluorosulfonyl)imide RTIL containing lithium bis(fluorosulfonyl)imide in ionic liquid based lithium batteries. J. Electrochem. Soc. 157, A66–A74 (2010).

    Article  Google Scholar 

  10. Basile, A., Hollenkamp, A. F., Bhatt, A. I. & O’Mullane, A. P. Extensive charge–discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem. Commun. 27, 69–72 (2013).

    Article  Google Scholar 

  11. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article  Google Scholar 

  12. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  13. Li, N.-W., Yin, Y.-X., Yang, C.-P. & Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).

    Article  Google Scholar 

  14. Kazyak, E., Wood, K. N. & Dasgupta, N. P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 27, 6457–6462 (2015).

    Article  Google Scholar 

  15. Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

    Article  Google Scholar 

  16. Cheng, X.-B. et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016).

    Article  Google Scholar 

  17. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).

    Article  Google Scholar 

  18. Zheng, J. et al. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer. Adv. Energy Mater. 6, 201502151 (2016).

    Google Scholar 

  19. Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article  Google Scholar 

  20. Xiang, H. et al. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. J. Power Sources 318, 170–177 (2016).

    Article  Google Scholar 

  21. Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).

    Article  Google Scholar 

  22. Ota, H., Sakata, Y., Inoue, A. & Yamaguchi, S. Analysis of vinylene carbonate derived SEI layers on graphite anode. J. Electrochem. Soc. 151, A1659–A1669 (2004).

    Article  Google Scholar 

  23. Chan, C. K., Ruffo, R., Hong, S. S. & Cui, Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009).

    Article  Google Scholar 

  24. Aurbach, D. et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47, 1423–1439 (2002).

    Article  Google Scholar 

  25. Dedryvère, R. et al. Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study. J. Phys. Chem. B 109, 15868–15875 (2005).

    Article  Google Scholar 

  26. Eshkenazi, V., Peled, E., Burstein, L. & Golodnitsky, D. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion. 170, 83–91 (2004).

    Article  Google Scholar 

  27. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  Google Scholar 

  28. Sloop, S. E., Pugh, J. K., Wang, S., Kerr, J. B. & Kinoshita, K. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem. Solid-State Lett. 4, A42–A44 (2001).

    Article  Google Scholar 

  29. Frisch, M. J. et al. Gaussian 09 (Gaussian, 2009).

  30. Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).

    Article  Google Scholar 

  31. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy (DOE) through the Advanced Battery Materials Research (BMR) Program under contract no. DE-AC02-05CH11231. W.X. also thanks the Battery500 Consortium for the partial support through the BMR Program. Microscopy as well as spectroscopy characterizations were performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a National Scientific User Facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under contract no. DE-AC05-76RLO1830. The NMC electrodes were produced at the US DOE’s CAMP Facility, ANL. The CAMP Facility is fully supported by the DOE VTO within the core funding of the Applied Battery Research (ABR) for Transportation Program.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., W.X. and J.-G.Z. initiated this research and designed the experiments. B.J.P. prepared and provided the standard NMC electrodes. J.Z. performed the electrochemical measurements with assistance from S.J., as well as the SEM observations. M.H.E. and D.M. performed XPS measurements and molecular dynamics simulations, respectively. J.Z., J.-G.Z., and W.X. prepared this manuscript with input from other co-authors.

Corresponding authors

Correspondence to Ji-Guang Zhang or Wu Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–14, Supplementary Table 1, Supplementary References. (PDF 1940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Engelhard, M., Mei, D. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy 2, 17012 (2017). https://doi.org/10.1038/nenergy.2017.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing