Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution

Abstract

Low-cost, layered transition-metal dichalcogenides (MX2) based on molybdenum and tungsten have attracted substantial interest as alternative catalysts for the hydrogen evolution reaction (HER). These materials have high intrinsic per-site HER activity; however, a significant challenge is the limited density of active sites, which are concentrated at the layer edges. Here we unravel electronic factors underlying catalytic activity on MX2 surfaces, and leverage the understanding to report group-5 MX2 (H-TaS2 and H-NbS2) electrocatalysts whose performance instead mainly derives from highly active basal-plane sites, as suggested by our first-principles calculations and performance comparisons with edge-active counterparts. Beyond high catalytic activity, they are found to exhibit an unusual ability to optimize their morphology for enhanced charge transfer and accessibility of active sites as the HER proceeds, offering a practical advantage for scalable processing. The catalysts reach 10 mA cm−2 current density at an overpotential of 50–60 mV with a loading of 10–55 μg cm−2, surpassing other reported MX2 candidates without any performance-enhancing additives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic origin of MX2 surface activity and the derived descriptor (εLUS) for catalysts screening.
Figure 2: HER electrocatalysis on H-TaS2 and H-NbS2.
Figure 3: Morphological evolution of H-TaS2 following cycling.
Figure 4: Chemical intactness and origin of self-optimizing behaviour.

Similar content being viewed by others

References

  1. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article  Google Scholar 

  2. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    Article  Google Scholar 

  3. Faber, M. S. & Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014).

    Article  Google Scholar 

  4. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  Google Scholar 

  5. Tavakkoli, M. et al. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem. Int. Edn 54, 4535–4538 (2015).

    Article  Google Scholar 

  6. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  7. Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).

    Article  Google Scholar 

  8. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  Google Scholar 

  9. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).

    Article  Google Scholar 

  10. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  Google Scholar 

  11. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P. & Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014).

    Article  Google Scholar 

  12. Lu, Q., Yu, Y., Ma, Q., Chen, B. & Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917–1933 (2016).

    Article  Google Scholar 

  13. Zhang, X., Lai, Z., Tan, C. & Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: preparation, hybridization, and applications. Angew. Chem. Int. Edn 55, 8816–8838 (2016).

    Article  Google Scholar 

  14. Chen, J. et al. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Edn 54, 1210–1214 (2015).

    Article  Google Scholar 

  15. Miao, J. et al. Hierarchical Ni–Mo–S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 1, e1500259 (2015).

    Google Scholar 

  16. Schmickler, W. & Santos, E. Interfacial Electrochemistry 2nd edn (Springer, 2010).

    Book  Google Scholar 

  17. Santos, E., Quaino, P. & Schmickler, W. Theory of electrocatalysis: hydrogen evolution and more. Phys. Chem. Chem. Phys. 14, 11224–11233 (2012).

    Article  Google Scholar 

  18. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    Article  Google Scholar 

  19. Calle-Vallejo, F., Koper, M. T. M. & Bandarenka, A. S. Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem. Soc. Rev. 42, 5210–5230 (2013).

    Article  Google Scholar 

  20. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  Google Scholar 

  21. Liu, Y., Wang, Y. M., Yakobson, B. I. & Wood, B. C. Assessing carbon-based anodes for lithium-ion batteries: a universal description of charge-transfer binding. Phys. Rev. Lett. 113, 028304 (2014).

    Article  Google Scholar 

  22. Arikado, T., Iwakura, C. & Tamura, H. Some oxide catalysts for the anodic evolution of chlorine: reaction mechanism and catalytic activity. Electrochim. Acta 23, 9–15 (1978).

    Article  Google Scholar 

  23. Arikado, T., Iwakura, C. & Tamura, H. A consideration of the electrochemical mechanism in the chlorine evolution reaction. Electrochim. Acta 23, 799–801 (1978).

    Article  Google Scholar 

  24. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    Article  Google Scholar 

  25. Pan, H. Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production. Sci. Rep. 4, 5348 (2014).

    Article  Google Scholar 

  26. Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015).

    Article  Google Scholar 

  27. Yuan, J. et al. Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv. Mater. 27, 5605–5609 (2015).

    Article  Google Scholar 

  28. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  Google Scholar 

  29. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  Google Scholar 

  30. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    Article  Google Scholar 

  31. Zeng, Z., Tan, C., Huang, X., Bao, S. & Zhang, H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7, 797–803 (2014).

    Article  Google Scholar 

  32. Gupta, U., Rao, B. G., Maitra, U., Prasad, B. E. & Rao, C. N. R. Visible-light-induced generation of H2 by nanocomposites of few-layer TiS2 and TaS2 with CdS nanoparticles. Chem. Asian J. 9, 1311–1315 (2014).

    Article  Google Scholar 

  33. Fletcher, S. Tafel slopes from first principles. J. Solid State Electrochem. 13, 537–549 (2009).

    Article  Google Scholar 

  34. Zeradjanin, A. R., Ventosa, E., Bondarenko, A. S. & Schuhmann, W. Evaluation of the catalytic performance of gas-evolving electrodes using local electrochemical noise measurements. ChemSusChem 5, 1905–1911 (2012).

    Article  Google Scholar 

  35. Gao, L. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).

    Article  Google Scholar 

  36. Wang, Y. et al. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2011).

    Article  Google Scholar 

  37. Murphy, D. W. et al. Properties of HxTaS2: correlation between the superconducting Tc and an electronic instability in layer compounds. J. Chem. Phys. 62, 967–972 (1975).

    Article  Google Scholar 

  38. Murphy, D. W. & Hull, G. W. Monodispersed tantalum disulfide and adsorption complexes with cations. J. Chem. Phys. 62, 973–978 (1975).

    Article  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  44. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  Google Scholar 

  45. Tsai, C., Abild-Pedersen, F. & Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014).

    Article  Google Scholar 

  46. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  Google Scholar 

  47. McMullan, W. G. & Irwin, J. C. Raman scattering from 2H and 3R–NbS2 . Solid State Commun. 45, 557–560 (1983).

    Article  Google Scholar 

  48. Carmalt, C. J., Manning, T. D., Parkin, I. P., Peters, E. S. & Hector, A. L. Formation of a new (1T) trigonal NbS2 polytype via atmospheric pressure chemical vapour deposition. J. Mater. Chem. 14, 290–291 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Zhou (ORNL), W. I. Choi (LLNL), A. Mohite and G. Gupta (LANL) for valuable discussions. B.C.W. and Y.L. acknowledge funding from LLNL LDRD Grant 12-ERD-053, with computing support from the LLNL Institutional Computing Grand Challenge Program. T.O. and B.C.W. acknowledge additional support from the US Department of Energy (DOE) Fuel Cell Technologies Office. Y.M.W. acknowledges the UCOP funding support on mesoscopic 2D materials. A portion of this work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. K.P.H. acknowledges funding from PIRE-2 Grant OISE-0968405. J.W. and K.K. acknowledge funding from MURI 2D Grant W911NF-11-1-0362. Y.Y., J.Z. and J.L. acknowledge support from the Welch Foundation grant C-1716. Y.L. and B.I.Y. acknowledge support from the Office of Naval Research Grant N00014-15-1-2372 and the Army Research Office Grant W911NF-16-1-0255. This work used computing resources sponsored by the DOE Office of EERE at NREL, and the NSF XSEDE Grant ACI-1053575.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived the idea and performed the theory calculations with guidance from T.O., B.C.W. and B.I.Y. K.P.H. synthesized the samples. J.W. performed the electrochemical testing. J.W. and K.P.H. performed a majority of the materials characterization, under the guidance of R.V., J.L. and P.M.A. Other authors provided additional sample characterization.

Corresponding authors

Correspondence to Brandon C. Wood or Boris I. Yakobson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figures 1–18, Supplementary Table 1 and Supplementary References. (PDF 2542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, J., Hackenberg, K. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat Energy 2, 17127 (2017). https://doi.org/10.1038/nenergy.2017.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing