Article | Published:

Efficient and equitable spatial allocation of renewable power plants at the country scale

Nature Energy volume 2, Article number: 17124 (2017) | Download Citation

Abstract

Globally, the production of renewable energy is undergoing rapid growth. One of the most pressing issues is the appropriate allocation of renewable power plants, as the question of where to produce renewable electricity is highly controversial. Here we explore this issue through analysis of the efficient and equitable spatial allocation of wind turbines and photovoltaic power plants in Germany. We combine multiple methods, including legal analysis, economic and energy modelling, monetary valuation and numerical optimization. We find that minimum distances between renewable power plants and human settlements should be as small as is legally possible. Even small reductions in efficiency lead to large increases in equity. By considering electricity grid expansion costs, we find a more even allocation of power plants across the country than is the case when grid expansion costs are neglected.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Renewables 2015 Global Status Report (Renewable Energy Policy Network – REN21, 2015);

  2. 2.

    Renewable Global Futures Report—Supplement Scenario Profiles Report (Renewable Energy Policy Network – REN21, 2013);

  3. 3.

    Wind Turbines, Fundamentals, Technology, Application, Economics (Springer, 2006).

  4. 4.

    ,  & Environmental impacts from the solar energy technologies. Energy Policy 33, 289–296 (2005).

  5. 5.

    , , , ,  & Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation. Biol. Conserv. 141, 2342–2356 (2008).

  6. 6.

    ,  & Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy 35, 2683–2691 (2007).

  7. 7.

    , ,  & A qualitative analysis to understand the acceptance of wind energy in Bavaria. Renew. Sustain. Energy Rev. 64, 248–259 (2016).

  8. 8.

    , ,  & Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 81, 1295–1305 (2007).

  9. 9.

    ,  & Global potential for wind-generated electricity. Proc. Natl Acad. Sci. USA 106, 10933–10938 (2009).

  10. 10.

    et al. GIS-based approach for potential analysis of solar PV generation at the regional scale: a case study of Fujian Province. Energy Policy 58, 248–259 (2016).

  11. 11.

    ,  & Determination of cost-potential-curves for wind energy in the German federal state of Baden-Württemberg. Energy Policy 57, 194–203 (2015).

  12. 12.

    ,  & Valuing the attributes of renewable energy investments. Energy Policy 34, 1004–1014 (2006).

  13. 13.

     & An economic assessment of windfarm power generation in Scotland including externalities. Energy Policy 35, 2811–2825 (2007).

  14. 14.

    ,  & Landscape externalities from onshore wind power. Energy Policy 38, 82–92 (2010).

  15. 15.

     & Incorporating externalities into a full cost approach to electric power generation life-cycle costing. Energy 29, 2125–2144 (2004).

  16. 16.

     & An optimization model for regional renewable energy development. Renew. Sustain. Energy Rev. 16, 4606–4615 (2012).

  17. 17.

    ,  & Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain. Energy 73, 311–324 (2014).

  18. 18.

     & Regional scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape Urban Plan. 138, 20–31 (2015).

  19. 19.

    , , ,  & Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines. Energy Policy 39, 3845–3854 (2011).

  20. 20.

    ,  & Stated Choice Methods. Analysis and Applications (Cambridge Univ. Press, 2000).

  21. 21.

    Zweiter Entwurf, Netzentwicklungsplan Strom 2025, Version 2015 (50Hertz Transmission, Amprion, TenneT TSO, TransnetBW, 2016);

  22. 22.

    Stromgestehungskosten Erneuerbare Energien (Fraunhofer ISE, 2013).

  23. 23.

    Variabilità e mutabilità (ed. Cuppini, P.) (1912).

  24. 24.

    Das erneuerbare-Energien-Gesetz (Bundesministerium für Wirtschaft und Energie, 2016);

  25. 25.

    Erneuerbare Energien (Bundesminiterium für Wirtschaft und Energie, 2016);

  26. 26.

    Park Effect (DWIA Danish Wind Industry Association, 2003);

  27. 27.

    Kostensituation der Windenergie an Land in Deutschland—Update (Deutsche WindGuard GmbH, 2015);

  28. 28.

    Aktuelle Fakten zur Photovoltaik in Deutschland (Fraunhofer ISE, 2016);

  29. 29.

    ,  & Applied Choice Analysis (Cambridge Univ. Press, 2015).

  30. 30.

     & Wind farms—where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden. Ecol. Econ. 105, 193–203 (2014).

  31. 31.

    ,  & Wind turbines location: How many and how far? Appl. Energy 151, 23–31 (2015).

  32. 32.

     & Stated preferences towards renewable energy alternatives in Germany—Do the consequentiality of the survey and trust in institutions matter? J. Environ. Econ. Policy 6, 1–16 (2016).

  33. 33.

    Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys 6th edn (The American Association for Public Opinion Research, 2009).

  34. 34.

    In Frontiers in Econometrics (ed. Zarembka, P.) 105–142 (Academic, 1974).

  35. 35.

    Verwaltungsgebiete mit Einwohnerzahlen (Bundesamt für Kartographie und Geodäsie, BKG, 2015);

  36. 36.

    Statistisches Jahrbuch: Deutschland und Internationales (Statistisches Bundesamt, 2013);

  37. 37.

     & A micro-genetic algorithm for multiobjective optimization. Lect. Notes Comput. Sci. 1993, 126–140 (2001).

  38. 38.

     & Multiobjective structural optimization using a microgenetic algorithm. Struct. Multidiscipl. Optim. 30, 388–403 (2005).

  39. 39.

    Open Source Electricity Model for Germany (ELMOD-DE) Data Documentation 83 (DIW Berlin, 2016);

  40. 40.

     & Power system transformation toward renewables—investment scenarios for Germany. Econ. Energy Environ. Policy 3, 29–43 (2014).

Download references

Acknowledgements

This work was funded by the German Ministry of Education and Research (BMBF) (grant number 01LA1110A,B).

Author information

Author notes

    • Jonas Egerer
    •  & Malte Oehlmann

    Present addresses: Friedrich-Alexander-Universität Erlangen-Nürnberg, Energie Campus Nürnberg (EnCN), Lange Gasse 20, 90403 Nuremberg, Germany (J.E.), adelphi, Alt-Moabit 91, 10559 Berlin, Germany (M.O.).

Affiliations

  1. Helmholtz Centre for Environmental Research – UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany

    • Martin Drechsler
    • , Martin Lange
    •  & Frank Masurowski
  2. Berlin University of Technology, Fachgebiet Wirtschafts- und Infrastrukturpolitik (WIP), Straße des 17. Juni 135, 10623 Berlin, Germany

    • Jonas Egerer
  3. Berlin University of Technology, Institut für Landschaftsarchitektur und Umweltplanung, Fachgebiet Landschaftsökonomie, Straße des 17. Juni 145, 10623 Berlin, Germany

    • Jürgen Meyerhoff
    •  & Malte Oehlmann
  4. Kiel Institute for the World Economy, Kiellinie 66, 24105 Kiel, Germany

    • Jürgen Meyerhoff

Authors

  1. Search for Martin Drechsler in:

  2. Search for Jonas Egerer in:

  3. Search for Martin Lange in:

  4. Search for Frank Masurowski in:

  5. Search for Jürgen Meyerhoff in:

  6. Search for Malte Oehlmann in:

Contributions

M.D. designed and supervised the study and wrote the paper. J.E. performed the analysis of the electricity grid and coupled it to the allocation of the renewable power plants. M.L. constructed the external cost function from survey data, optimized efficiency and equity and coupled the allocation of the renewable power plants to the electricity grid. F.M. set up the study on a Geographical Information System and performed the energy potential analysis. J.M. designed and supervised the study and, together with M.O., carried out the choice experiment to monetarily value external effects of the renewable power plants and construct the external cost function. J.E., M.L. and J.M. wrote sections of the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Martin Drechsler.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Tables 1–3, Supplementary Figures 1–5, Supplementary Note 1 and Supplementary References.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nenergy.2017.124

Further reading