Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient and equitable spatial allocation of renewable power plants at the country scale

Abstract

Globally, the production of renewable energy is undergoing rapid growth. One of the most pressing issues is the appropriate allocation of renewable power plants, as the question of where to produce renewable electricity is highly controversial. Here we explore this issue through analysis of the efficient and equitable spatial allocation of wind turbines and photovoltaic power plants in Germany. We combine multiple methods, including legal analysis, economic and energy modelling, monetary valuation and numerical optimization. We find that minimum distances between renewable power plants and human settlements should be as small as is legally possible. Even small reductions in efficiency lead to large increases in equity. By considering electricity grid expansion costs, we find a more even allocation of power plants across the country than is the case when grid expansion costs are neglected.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficient allocation of renewable power plants per federal state.
Figure 2: Efficient minimum settlement distances for wind turbines and photovoltaic power plants as functions of solar investment costs.
Figure 3: Trade-off between equity and efficiency.
Figure 4: Trade-off between efficiency and equity and efficient share of wind power as a function of equity.
Figure 5: Efficient allocation of renewable power plants with and without consideration of grid expansion costs.

Similar content being viewed by others

References

  1. Renewables 2015 Global Status Report (Renewable Energy Policy Network – REN21, 2015); http://www.ren21.net/Portals/0/documents/e-paper/GSR2015KF/index.html#/8

  2. Renewable Global Futures Report—Supplement Scenario Profiles Report (Renewable Energy Policy Network – REN21, 2013); http://www.ren21.net/Portals/0/documents/activities/gfr/REN21_GFR_2013_scenarios.pdf

  3. Hau, E. Wind Turbines, Fundamentals, Technology, Application, Economics (Springer, 2006).

    Google Scholar 

  4. Tsoutsos, T., Frantzeskaki, N. & Gekas, V. Environmental impacts from the solar energy technologies. Energy Policy 33, 289–296 (2005).

    Article  Google Scholar 

  5. Bright, J., Langston, R., Bullman, R., Evans, R., Gardener, S. & Pearce-Higgins, J. Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation. Biol. Conserv. 141, 2342–2356 (2008).

    Article  Google Scholar 

  6. Wüstenhagen, R., Wolsingk, M. & Bürer, M. J. Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy 35, 2683–2691 (2007).

    Article  Google Scholar 

  7. Langer, K., Decker, T., Roosen, J. & Menrad, K. A qualitative analysis to understand the acceptance of wind energy in Bavaria. Renew. Sustain. Energy Rev. 64, 248–259 (2016).

    Article  Google Scholar 

  8. Šúri, M., Huld, T. A., Dunlop, E. D. & Ossenbrink, H. A. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 81, 1295–1305 (2007).

    Article  Google Scholar 

  9. Lu, X., McElroy, M. B. & Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl Acad. Sci. USA 106, 10933–10938 (2009).

    Article  Google Scholar 

  10. Sun, Y.-W. et al. GIS-based approach for potential analysis of solar PV generation at the regional scale: a case study of Fujian Province. Energy Policy 58, 248–259 (2016).

    Article  Google Scholar 

  11. McKenna, R., Gantenbein, S. & Fichtner, W. Determination of cost-potential-curves for wind energy in the German federal state of Baden-Württemberg. Energy Policy 57, 194–203 (2015).

    Article  Google Scholar 

  12. Bergmann, A., Hanley, N. & Wright, R. Valuing the attributes of renewable energy investments. Energy Policy 34, 1004–1014 (2006).

    Article  Google Scholar 

  13. Moran, D. & Sherrington, C. An economic assessment of windfarm power generation in Scotland including externalities. Energy Policy 35, 2811–2825 (2007).

    Article  Google Scholar 

  14. Meyerhoff, J., Ohl, C. & Hartje, V. Landscape externalities from onshore wind power. Energy Policy 38, 82–92 (2010).

    Article  Google Scholar 

  15. Roth, I. F. & Ams, L. L. Incorporating externalities into a full cost approach to electric power generation life-cycle costing. Energy 29, 2125–2144 (2004).

    Article  Google Scholar 

  16. Arnette, A. & Zobel, C. W. An optimization model for regional renewable energy development. Renew. Sustain. Energy Rev. 16, 4606–4615 (2012).

    Article  Google Scholar 

  17. Sánchez-Lozano, J. M., García-Cascales, M. S. & Lamata, M. T. Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain. Energy 73, 311–324 (2014).

    Article  Google Scholar 

  18. Watson, J. J. W. & Hudson, M. D. Regional scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape Urban Plan. 138, 20–31 (2015).

    Article  Google Scholar 

  19. Drechsler, M., Ohl, C., Meyerhoff, J., Eichhorn, M. & Monsees, J. Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines. Energy Policy 39, 3845–3854 (2011).

    Article  Google Scholar 

  20. Louviere, J. J., Hensher, D. A. & Swait, J. D. Stated Choice Methods. Analysis and Applications (Cambridge Univ. Press, 2000).

    Book  Google Scholar 

  21. Zweiter Entwurf, Netzentwicklungsplan Strom 2025, Version 2015 (50Hertz Transmission, Amprion, TenneT TSO, TransnetBW, 2016); https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-files/NEP_2025_2_Entwurf_Teil1.pdf

  22. Stromgestehungskosten Erneuerbare Energien (Fraunhofer ISE, 2013).

  23. Gini, C. Variabilità e mutabilità (ed. Cuppini, P. ) (1912).

    Google Scholar 

  24. Das erneuerbare-Energien-Gesetz (Bundesministerium für Wirtschaft und Energie, 2016); https://www.erneuerbare-energien.de/EE/Redaktion/DE/Dossier/eeg.html?cms_docId=73930

  25. Erneuerbare Energien (Bundesminiterium für Wirtschaft und Energie, 2016); http://www.bmwi.de/DE/Themen/Energie/Erneuerbare-Energien/erneuerbare-energien-auf-einen-blick.html

  26. Park Effect (DWIA Danish Wind Industry Association, 2003); http://dr%C3%B8mst%C3%B8rre.dk/wp-content/wind/miller/windpower%20web/en/tour/wres/park.htm

  27. Kostensituation der Windenergie an Land in Deutschland—Update (Deutsche WindGuard GmbH, 2015); https://www.wind-energie.de/sites/default/files/download/publication/kostensituation-der-windenergie-land-deutschland-update/20151214_kostensituation_der_windenergie_an_land_in_deutschland_update.pdf

  28. Aktuelle Fakten zur Photovoltaik in Deutschland (Fraunhofer ISE, 2016); https://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf

  29. Hensher, D. A., Rose, J. A. & Greene, W. H. Applied Choice Analysis (Cambridge Univ. Press, 2015).

    Book  Google Scholar 

  30. Ek, K. & Persson, L. Wind farms—where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden. Ecol. Econ. 105, 193–203 (2014).

    Article  Google Scholar 

  31. Betakova, V., Vojar, J. & Sklenicka, P. Wind turbines location: How many and how far? Appl. Energy 151, 23–31 (2015).

    Article  Google Scholar 

  32. Oehlmann, M. & Meyerhoff, J. Stated preferences towards renewable energy alternatives in Germany—Do the consequentiality of the survey and trust in institutions matter? J. Environ. Econ. Policy 6, 1–16 (2016).

    Article  Google Scholar 

  33. Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys 6th edn (The American Association for Public Opinion Research, 2009).

  34. McFadden, D. In Frontiers in Econometrics (ed. Zarembka, P. ) 105–142 (Academic, 1974).

    Google Scholar 

  35. Verwaltungsgebiete mit Einwohnerzahlen (Bundesamt für Kartographie und Geodäsie, BKG, 2015); http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu gdz_akt_zeile=5 gdz_anz_zeile=1 gdz_unt_zeile=18 gdz_user_id=0

  36. Statistisches Jahrbuch: Deutschland und Internationales (Statistisches Bundesamt, 2013); https://www.destatis.de/DE/Publikationen/StatistischesJahrbuch/StatistischesJahrbuch2013.pdf?__blob=publicationFile

  37. Coello Coello, C. A. & Pulido, G. T. A micro-genetic algorithm for multiobjective optimization. Lect. Notes Comput. Sci. 1993, 126–140 (2001).

    Article  MathSciNet  Google Scholar 

  38. Coello Coello, C. A. & Pulido, G. T. Multiobjective structural optimization using a microgenetic algorithm. Struct. Multidiscipl. Optim. 30, 388–403 (2005).

    Article  Google Scholar 

  39. Egerer, J. Open Source Electricity Model for Germany (ELMOD-DE) Data Documentation 83 (DIW Berlin, 2016); https://www.diw.de/sixcms/detail.php?id=diw_01.c.528929.de

    Google Scholar 

  40. Egerer, J. & Schill, W.-P. Power system transformation toward renewables—investment scenarios for Germany. Econ. Energy Environ. Policy 3, 29–43 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the German Ministry of Education and Research (BMBF) (grant number 01LA1110A,B).

Author information

Authors and Affiliations

Authors

Contributions

M.D. designed and supervised the study and wrote the paper. J.E. performed the analysis of the electricity grid and coupled it to the allocation of the renewable power plants. M.L. constructed the external cost function from survey data, optimized efficiency and equity and coupled the allocation of the renewable power plants to the electricity grid. F.M. set up the study on a Geographical Information System and performed the energy potential analysis. J.M. designed and supervised the study and, together with M.O., carried out the choice experiment to monetarily value external effects of the renewable power plants and construct the external cost function. J.E., M.L. and J.M. wrote sections of the paper.

Corresponding author

Correspondence to Martin Drechsler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–5, Supplementary Note 1 and Supplementary References. (PDF 825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drechsler, M., Egerer, J., Lange, M. et al. Efficient and equitable spatial allocation of renewable power plants at the country scale. Nat Energy 2, 17124 (2017). https://doi.org/10.1038/nenergy.2017.124

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing