Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climate change and the vulnerability of electricity generation to water stress in the European Union

Abstract

Thermoelectric generation requires large amounts of water for cooling. Recent warm periods have led to curtailments in generation, highlighting concerns about security of supply. Here we assess EU-wide climate impacts for 1,326 individual thermoelectric plants and 818 water basins in 2020 and 2030. We show that, despite policy goals and a decrease in electricity-related water withdrawal, the number of regions experiencing some reduction in power availability due to water stress rises from 47 basins to 54 basins between 2014 and 2030, with further plants planned for construction in stressed basins. We examine the reasons for these pressures by including water demand for other uses. The majority of vulnerable basins lie in the Mediterranean region, with further basins in France, Germany and Poland. We investigate four adaptations, finding that increased future seawater cooling eases some pressures. This highlights the need for an integrated, basin-level approach in energy and water policy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variations in water stress and power availability across the EU.
Figure 2: Impacts of adaptation strategies across Europe.

Similar content being viewed by others

References

  1. Water Use in Industry (Eurostat, 2014); http://ec.europa.eu/eurostat/statistics-explained/index.php/Water_use_in_industry

  2. Koch, H. & Vögele, S. Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol. Econ. 68, 2031–2039 (2009).

    Article  Google Scholar 

  3. Proust, K. et al. Climate, Energy and Water; Accounting for the Links (Land and Water, 2007); http://s3.amazonaws.com/zanran_storage/www.crdc.com.au/ContentPages/44777431.pdf

  4. Luck, M., Landis, M. & Gassert, F. Aqueduct Water Stress Projections: Decadal Projections of Water Supply and Demand Using CMIP5 GMs (World Resources Institute, 2015); https://www.wri.org/sites/default/files/aqueduct-water-stress-projections-technical-note.pdf

  5. Holland, R. A. et al. Global impacts of energy demand on the freshwater resources of nations. Proc. Natl Acad. Sci. USA 112, E6707–E6716 (2015).

    Article  Google Scholar 

  6. Russo, S., Dosio, A., Sterl, A., Barbosa, P. & Vogt, J. Projection of occurrence of extreme dry-wet years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices. J. Geophys. Res. 118, 7628–7639 (2013).

    Google Scholar 

  7. Scott, J. & Rajamani, L. EU climate change unilateralism. Eur. J. Int. Law 23, 469–494 (2012).

    Article  Google Scholar 

  8. Limiting Global Climate Change to 2 Degrees Celsius—The way Ahead for 2020 and Beyond (Commission of the European Communities, 2007).

  9. Byers, E. A., Hall, J. W., Amezaga, J. M., O’Donnell, G. M. & Leathard, A. Water and climate risks to power generation with carbon capture and storage. Environ. Res. Lett. 11, 024011 (2016).

    Article  Google Scholar 

  10. Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environ. Res. Lett. 7, 045802 (2012).

    Article  Google Scholar 

  11. Fricko, O. et al. Energy sector water use implications of a 2-degree climate policy. Environ. Res. Lett. 11, 034011 (2016).

    Article  Google Scholar 

  12. Okadera, T., Chontanawat, J. & Gheewala, S. H. Water footprint for energy production and supply in Thailand. Energy 77, 49–56 (2014).

    Article  Google Scholar 

  13. Pfister, S., Saner, D. & Koehler, A. The environmental relevance of freshwater consumption in global power production. Int. J. Life Cycle Assess. 16, 580–591 (2011).

    Article  Google Scholar 

  14. Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H. & Marks, D. H. The water consumption of energy production: an international comparison. Environ. Res. Lett. 9, 105002 (2014).

    Article  Google Scholar 

  15. Hejazi, M. I. et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl Acad. Sci. USA 112, 10635–10640 (2015).

    Article  Google Scholar 

  16. Van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    Article  Google Scholar 

  17. Database Description and Research Methodology UDI World Electric Power Plants Database. 1 (Platts, 2015); https://www.platts.com/im.platts.content/downloads/udi/wepp/descmeth.pdf

  18. Gassert, F., Landis, M., Luck, M., Reig, P. & Shiao, T. Aqueduct Global Maps 2.1 (World Resources Institute, 2015); https://www.wri.org/sites/default/files/Aqueduct_Global_Maps_2.1.pdf

  19. Hussey, K. & Pittock, J. The energy-water nexus: managing the links between energy and water for a sustainable future. Ecol. Soc. 17, 1–9 (2012).

    Article  Google Scholar 

  20. Fais, B., Blesl, M., Fahl, U. & Voß, A. Comparing different support schemes for renewable electricity in the scope of an energy systems analysis. Appl. Energy 131, 479–489 (2014).

    Article  Google Scholar 

  21. Behrens, P., Rodrigues, J., Brás, T. & Silva, C. Environmental, economic, and social impacts of feed-in tariffs: a Portuguese perspective 2000–2010. Appl. Energy 173, 309–319 (2016).

    Article  Google Scholar 

  22. King, C. W., Stillwell, A. S., Twomey, K. M. & Webber, M. E. Coherence between water and energy policies. Nat. Resour. J. 53, 117–215 (2013).

    Google Scholar 

  23. Becker, S., Rodriguez, R. A., Andresen, G. B., Schramm, S. & Greiner, M. Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply. Energy 64, 404–418 (2014).

    Article  Google Scholar 

  24. Wu, M. & Chiu, Y. Consumptive Water Use in the Production of Ethanol and Petroleum Gasoline 2011 Update Report number ANL/ESD/09-1 (Argonne National Laboratory, 2011).

  25. The Dublin Statement on Water and Sustainable Development 1–55 (World Meteorological Organization, 1992); http://www.wmo.int/pages/prog/hwrp/documents/english/icwedece.html.

  26. Rijke, J., van Herk, S., Zevenbergen, C. & Ashley, R. Room for the river: delivering integrated river basin management in the Netherlands. Int. J. River Basin Manage. 10, 369–382 (2012).

    Article  Google Scholar 

  27. Nielsen, H. Ø., Frederiksen, P., Saarikoski, H., Rytkönen, A.-M. & Pedersen, A. B. How different institutional arrangements promote integrated river basin management. Evidence from the Baltic Sea region. Land Use Policy 30, 437–445 (2013).

    Article  Google Scholar 

  28. Linkov, I. et al. From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent developments and applications. Environ. Int. 32, 1072–1093 (2006).

    Article  Google Scholar 

  29. Pahl-Wostl, C., Lebel, L., Knieper, C. & Nikitina, E. From applying panaceas to mastering complexity: toward adaptive water governance in river basins. Environ. Sci. Policy 23, 24–34 (2012).

    Article  Google Scholar 

  30. Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manag. 21, 49–62 (2007).

    Article  Google Scholar 

  31. Mostert, E. et al. Social learning in European river-basin management: barriers and fostering mechanisms from 10 river basins. Ecol. Soc. 12, 19 (2007).

    Article  Google Scholar 

  32. Collins, R., Kristensen, P. & Thyssen, N. Water Resources Across Europe—Confronting Water Scarcity and Drought EEA Report 2/2009. (Resilience Alliance, 2009); http://dx.doi.org/10.2800/16803

  33. Meador, M. Inter-basin water transfer: ecological concerns. Fisheries 17, 17–22 (1992).

    Article  Google Scholar 

  34. Capros, P., Mantzos, L., Papandreou, V. & Tasios, N. European Energy and Transport—Trends to 2030 1–158 (Directorate-General for Energy and Transport, 2007).

  35. Electricity Production and Supply Statistics (European Commission, 2014); http://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_production_and_supply_statistics

  36. CARMA Database v3.0 (Centre for Global Development, 2009); http://www.carma.org

  37. Dams and Development: A New Framework for Decision-Making 58–63 (World Commission on Dams, 2001); http://pubs.iied.org/pdfs/9126IIED.pdf

  38. Fthenakis, V. & Kim, H. C. Life-cycle uses of water in US electricity generation. Renew. Sustain. Energy Rev. 14, 2039–2048 (2010).

    Article  Google Scholar 

  39. Elcock, D. Future US water consumption: the role of energy production. J. Am. Water Resour. Assoc. 46, 447–460 (2010).

    Article  Google Scholar 

  40. Joint Research Centre. Analysis of Energy Saving Potentials in Energy Generation: Final Results (Institute for Energy and Transport at the European Commission, 2012); http://dx.doi.org/doi:10.2790/58574

  41. MacLeay, I., Harris, K. & Annut, A. Digest of UK Energy Statistics 2013 1–268 (Department of Energy & Climate Change, National Statistics, 2013); https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/279523/DUKES_2013_published_version.pdf

  42. Moreno, F. & Martinez-Val, J. M. Collateral effects of renewable energies deployment in Spain: impact on thermal power plants performance and management. Energy Policy 39, 6561–6574 (2011).

    Article  Google Scholar 

  43. Honoré, A. The Outlook for Natural Gas Demand in Europe (Oxford Institute for Energy Studies, 2014); https://www.oxfordenergy.org/wpcms/wp-content/uploads/2014/06/NG-87.pdf

  44. Davis, S. J. & Socolow, H. Commitment accounting of CO2 emissions. Environ. Res. Lett. 9, 084018 (2014).

    Article  Google Scholar 

  45. Schwarz, H. G. Modernisation of existing and new construction of power plants in Germany: results of an optimisation model. Energy Econ. 27, 113–137 (2005).

    Article  Google Scholar 

  46. Rintamaa, R. & Aho-Mantila, I. Plant life management and modernisation: research challenges in the EU. Nucl. Eng. Des. 241, 3389–3394 (2011).

    Article  Google Scholar 

  47. Venkatesh, A., Jaramillo, P., Griffin, W. M. & Matthews, H. S. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions. Environ. Sci. Technol. 46, 9838–9845 (2012).

    Article  Google Scholar 

  48. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  49. O’Neill, B. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    Article  Google Scholar 

  50. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  51. Van Vuuren, D. P. et al. The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation. Glob. Environ. Change 21, 575–591 (2011).

    Article  Google Scholar 

  52. Macknick, J., Sattler, S., Averyt, K., Clemmer, S. & Rogers, J. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environ. Res. Lett. 7, 045803 (2012).

    Article  Google Scholar 

  53. Kelly, B. Nexant Parabolic Trough Solar Power Plant Systems Analysis Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection (NREL, 2006); http://www.nrel.gov/docs/fy06osti/40163.pdf

  54. Nomenclature of Territorial Units for Statistics (Eurostat 2017); http://ec.europa.eu/eurostat/web/nuts/overview

  55. Gassert, F., Landis, M., Luck, M., Reig, P. & Shiao, T. Aqueduct Metadata Document Aqueduct Global Maps v.2. 0 1–20 (World Resources Institute, 2013).

    Google Scholar 

Download references

Acknowledgements

We thank the World Resources Institute and R. Hofste for their support.

Author information

Authors and Affiliations

Authors

Contributions

P.B. designed the study and performed analysis. M.T.H.v.V. provided specific data and input on drafting. J.F.D.R. assisted with the analysis. T.N. assisted in preparing the data set of power plants. P.B. drafted the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Paul Behrens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–14, Supplementary Notes 1–2 and Supplementary References (PDF 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrens, P., van Vliet, M., Nanninga, T. et al. Climate change and the vulnerability of electricity generation to water stress in the European Union. Nat Energy 2, 17114 (2017). https://doi.org/10.1038/nenergy.2017.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.114

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene