Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intracycle angular velocity control of cross-flow turbines

Abstract

Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nominal blade flow conditions.
Figure 2: Turbine set-up and control system.
Figure 3: Control scheme overview.
Figure 4: Tip-speed ratio profiles for optimized controllers.
Figure 5: Per zone control comparison.

Similar content being viewed by others

References

  1. Eriksson, S., Bernhoff, H. & Leijon, M. Evaluation of different turbine concepts for wind power. Renew. Sustain. Energy Rev. 12, 1419–1434 (2008).

    Article  Google Scholar 

  2. Bhutta, M. M. A. et al. Vertical axis wind turbine—a review of various configurations and design techniques. Renew. Sustain. Energy Rev. 16, 1926–1939 (2012).

    Article  Google Scholar 

  3. Khan, M., Bhuyan, G., Iqbal, M. & Quaicoe, J. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Appl. Energy 86, 1823–1835 (2009).

    Article  Google Scholar 

  4. Balduzzi, F., Bianchini, A., Carnevale, E. A., Ferrari, L. & Magnani, S. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 97, 921–929 (2012).

    Article  Google Scholar 

  5. Sutherland, H. J., Berg, D. E. & Ashwill, T. D. A retrospective of VAWT technology. Technical Report No. SAND2012-0304 (Sandia National Laboratories, 2012).

  6. Whittlesey, R. W., Liska, S. C. & Dabiri, J. O. Fish schooling as a basis for vertical-axis wind turbine farm design. Bioinspir. Biomimetics 5, 035005 (2010).

    Article  Google Scholar 

  7. Dabiri, J. O. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J. Renew. Sustain. Energy 3, 043104 (2011).

    Article  Google Scholar 

  8. Kinzel, M., Mulligan, Q. & Dabiri, J. O. Energy exchange in an array of vertical-axis wind turbines. J. Turbulence 13, N38 (2012).

    Article  Google Scholar 

  9. Garrett, C. & Cummins, P. The efficiency of a turbine in a tidal channel. J. Fluid Mech. 588, 243–251 (2007).

    Article  Google Scholar 

  10. Salter, S. H. & Taylor, J. R. M. Vertical-axis tidal-current generators and the Pentland Firth. Proc. Inst. Mech. Eng. 221, 181–195 (2007).

    Article  Google Scholar 

  11. Birch, J. & Dickinson, M. Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412, 729–733 (2001).

    Article  Google Scholar 

  12. Videler, J. J., Samhuis, E. J. & Povel, G. D. E. Leading-edge vortex lifts swifts. Science 306, 1960–1962 (2004).

    Article  Google Scholar 

  13. Muijres, F. et al. Leading-edge vortex improves lift in slow-flying bats. Science 319, 1250–1253 (2008).

    Article  Google Scholar 

  14. Chen, K. K., Colonius, T. & Taira, K. The leading-edge vortex and quasisteady vortex shedding on an accelerating plate. Phys. Fluids 22, 033601 (2010).

    Article  Google Scholar 

  15. Kirke, B. Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renew. Energy 36, 3013–3022 (2011).

    Article  Google Scholar 

  16. Paraschivoiu, I., Trifu, O. & Saeed, F. H-Darrieus wind turbine with blade pitch control. Int. J. Rotat. Mach. 2009, 505343 (2009).

    Article  Google Scholar 

  17. Schönborn, A. & Chantzidakis, M. Development of a hydraulic control mechanism for cyclic pitch marine current turbines. Renew. Energy 32, 662–679 (2007).

    Article  Google Scholar 

  18. Brunton, S. L., Dawson, S. T. & Rowley, C. W. State-space model identification and feedback control of unsteady aerodynamic forces. J. Fluids Struct. 50, 253–270 (2014).

    Article  Google Scholar 

  19. Migliore, P., Wolfe, W. & Fanucci, J. Flow curvature effects on Darrieus turbine blade aerodynamics. J. Energy 4, 49–55 (1980).

    Article  Google Scholar 

  20. Tsai, H. C. & Colonius, T. Coriolis effect on dynamic stall in a vertical axis wind turbine. AIAA J. 54, 216–226 (2015).

    Article  Google Scholar 

  21. Leishman, J. G. Principles of Helicopter Aerodynamics (Cambridge Univ. Press, 2006).

    Google Scholar 

  22. McCroskey, W. The Phenomenon of Dynamic Stall Technical Report (National Aeronautics and Space Administration Moffett Field CA, AMES Research Center, 1981).

  23. Carr, L. W., McAlister, K. W. & McCroskey, W. J. Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiments Technical Report (National Aeronautics and Space Administration Moffett Field CA, AMES Research Center, 1977).

  24. Buchner, A. J., Lohry, M., Martinelli, L., Soria, J. & Smits, A. Dynamic stall in vertical axis wind turbines: comparing experiments and computations. J. Wind Eng. Ind. Aerodyn. 146, 163–171 (2015).

    Article  Google Scholar 

  25. Ferreira, C. S., Bijl, H., Van Bussel, G. & Van Kuik, G. Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. In J. Phys. Conference Series Vol. 75, 012023 (IOP Publishing, 2007).

    Google Scholar 

  26. Fraunie, P., Beguier, C., Paraschivoiu, I. & Brochier, G. Water channel experiments of dynamic stall on Darrieus wind turbine blades. J. Propul. Power 2, 445–449 (1986).

    Article  Google Scholar 

  27. Fujisawa, N. & Shibuya, S. Observations of dynamic stall on Darrieus wind turbine blades. J. Wind Eng. Ind. Aerodyn. 89, 201–214 (2001).

    Article  Google Scholar 

  28. Oler, J., Strickland, J., Im, B. & Graham, G. Dynamic Stall Regulation of the Darrieus Turbine. SAND83 - 7029 (Sandia National Laboratories, 1983).

  29. Warrick, D. R., Tobalske, B. W. & Powers, D. R. Aerodynamics of the hovering hummingbird. Nature 435, 1094–1097 (2005).

    Article  Google Scholar 

  30. Dickinson, M. H., Lehmann, F. O. & Sane, S. P. Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999).

    Article  Google Scholar 

  31. Lentink, D., Dickson, W. B., Van Leeuwen, J. L. & Dickinson, M. H. Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009).

    Article  Google Scholar 

  32. Milano, M. & Gharib, M. Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403–409 (2005).

    Article  Google Scholar 

  33. Hover, F., Haugsdal, Ø. & Triantafyllou, M. Effect of angle of attack profiles in flapping foil propulsion. J. Fluids Struct. 19, 37–47 (2004).

    Article  Google Scholar 

  34. Kinsey, T. & Dumas, G. Parametric study of an oscillating airfoil in a power-extraction regime. AIAA J. 46, 1318–1330 (2008).

    Article  Google Scholar 

  35. Ashraf, M., Young, J. S., Lai, J. & Platzer, M. Numerical analysis of an oscillating-wing wind and hydropower generator. AIAA J. 49, 1374–1386 (2011).

    Article  Google Scholar 

  36. Xiao, Q., Liao, W., Yang, S. & Peng, Y. How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil? Renew. Energy 37, 61–75 (2012).

    Article  Google Scholar 

  37. Strom, B., Kim, D., Mandre, S. & Breuer, K. Parametric dependence of energy harvesting performance with an oscillating hydrofoil. Bull. Am. Phys. Soc. 59, abstr. A18.001 (2014).

  38. Munteanu, I., Bratcu, A. I. & Ceanga, E. Wind turbulence used as searching signal for mppt in variable-speed wind energy conversion systems. Renew. Energy 34, 322–327 (2009).

    Article  Google Scholar 

  39. Johnson, K. E., Pao, L. Y., Balas, M. J. & Fingersh, L. J. Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. Control Syst. IEEE 26, 70–81 (2006).

    Google Scholar 

  40. Greenblatt, D., Ben-Harav, A. & Mueller-Vahl, H. Dynamic stall control on a vertical-axis wind turbine using plasma actuators. AIAA J. 52, 456–462 (2014).

    Article  Google Scholar 

  41. Yen, J. & Ahmed, N. A. Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. J. Wind Eng. Ind. Aerodyn. 114, 12–17 (2013).

    Article  Google Scholar 

  42. Brunton, S. L. & Noack, B. R. Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67, 050801-1–050801-48 (2015).

    Article  Google Scholar 

  43. Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965).

    Article  MathSciNet  Google Scholar 

  44. Gerakopulos, R., Boutilier, M. & Yarusevych, S. Aerodynamic characterization of a naca 0018 airfoil at low reynolds numbers 40th Fluid Dynamics Conference and Exhibit 4629, 2010–4629 (AIAA, 2010).

  45. Falnes, J. et al. Optimum control of oscillation of wave-energy converters. Int. J. Offshore Polar Eng. 12, ISOPE-02-12-2-147 (2002).

  46. Beatty, S. J., Hall, M., Buckham, B. J., Wild, P. & Bocking, B. Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves. Ocean Eng. 104, 370–386 (2015).

    Article  Google Scholar 

  47. Cavagnaro, R. J., Strom, B., Polagye, B. & Stewart, A. Power collection from multiple hydrokinetic generators utilizing advanced control 12th European Wave and Tidal Energy Conference (in the press).

  48. Weingarten, L. I. & Blackwell, B. Sandia Vertical-Axis Wind Turbine Program Technical quarterly report January–March 1976 (Sandia Labs, 1976).

  49. Consul, C., Willden, R., Ferrer, E. & McCulloch, M. Influence of solidity on the performance of a cross-flow turbine 8th European Wave and Tidal Energy Conference (2009).

  50. Barton, R. R. & Ivey, J. S. Jr Nelder-mead simplex modifications for simulation optimization. Manage. Sci. 42, 954–973 (1996).

    Article  Google Scholar 

  51. Miller, M., Strom, B., Breuer, K. & Mandre, S. Optimization of energy harvesting efficiency of an oscillating hydrofoil: sinusoidal and non-sinusoidal trajectories. Bull. Am. Phys. Soc. 59, abstr. A18.001 (2014).

Download references

Acknowledgements

This research was supported by the US Navy Naval Facilities Engineering Command (NAVFAC).

Author information

Authors and Affiliations

Authors

Contributions

B.S. conceived of the variable angular velocity control scheme, fabricated and performed the experiments, processed the data, and contributed to writing the paper. B.P. and S.L.B. supervised the project and contributed to writing the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Benjamin Strom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–6 and Supplementary Table 1. (PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strom, B., Brunton, S. & Polagye, B. Intracycle angular velocity control of cross-flow turbines. Nat Energy 2, 17103 (2017). https://doi.org/10.1038/nenergy.2017.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing