Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

A Corrigendum to this article was published on 10 April 2017


As lithium-ion batteries become ubiquitous, the energy storage market is striving for better performance, longer lifetime and better safety of the devices. This race for performance is often focused on the search for new materials, whereas less effort has been dedicated to the electrode engineering. Enhancing the power density by increasing the amount of active material remains impractical since it impinges the transport of ions across the electrode during the charging and discharging processes. Here, we show that the electrochemical performance of a battery containing a thick (about 200 μm), highly loaded (about 10 mg cm−2) graphite electrode can be remarkably enhanced by fabricating anodes with an out-of-plane aligned architecture using a low external magnetic field. The lower tortuosity resulting from such a simple and scalable magnetic alignment approach leads to a specific charge up to three times higher than that of non-architectured electrodes at a rate of 1C.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functionalization of the graphite flakes and electrode fabrication.
Figure 2: Effect of the magnetic field on the orientation of graphite flakes.
Figure 3: 3D architectures of aligned and reference graphite electrodes.
Figure 4: Electrochemical performance of aligned and reference electrodes.
Figure 5: Capacity retention in highly loaded electrodes.


  1. Jang, S., Lee, H.-Y., Lee, S.-J., Baik, H. & Lee, S. Synthesis and electrochemical characterization of LixCoO2 for lithium-ion batteries. Mater. Res. Bull. 38, 1–9 (2003).

    Article  Google Scholar 

  2. Badey, Q., Cherouvrier, G., Reynier, Y., Duffault, J. & Franger, S. Ageing forecast of lithium-ion batteries for electric and hybrid vehicles. Curr. Top. Electrochem. 16, 65–79 (2011).

    Google Scholar 

  3. Larcher, D. & Tarascon, J.-M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chem. 7, 19–29 (2014).

    Article  Google Scholar 

  4. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x < −1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  Google Scholar 

  5. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  Google Scholar 

  6. Yazami, R. & Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365–371 (1983).

    Article  Google Scholar 

  7. Heß, M. & Novák, P. Shrinking annuli mechanism and stage-dependent rate capability of thin-layer graphite electrodes for lithium-ion batteries. Electrochim. Acta 106, 149–158 (2013).

    Article  Google Scholar 

  8. Ren, Y., Hardwick, L. J. & Bruce, P. G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew. Chem. 49, 2570–2574 (2010).

    Article  Google Scholar 

  9. Ren, Y. et al. Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. 124, 2206–2209 (2012).

    Article  Google Scholar 

  10. Miot, J. et al. Biomineralized α-Fe2O3: texture and electrochemical reaction with Li. Energy Environ. Sci. 7, 451–460 (2014).

    Article  Google Scholar 

  11. Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J.-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).

    Article  Google Scholar 

  12. Smith, K. C., Mukherjee, P. P. & Fisher, T. S. Columnar order in jammed LiFePO4 cathodes: ion transport catastrophe and its mitigation. Phys. Chem. Chem. Phys. 14, 7040–7050 (2012).

    Article  Google Scholar 

  13. Harris, S. J. & Lu, P. Effects of inhomogeneities—nanoscale to mesoscale—on the durability of Li-ion batteries. J. Phys. Chem. C 117, 6481–6492 (2013).

    Article  Google Scholar 

  14. Thorat, I. V. et al. Quantifying tortuosity in porous Li-ion battery materials. J. Power Sources 188, 592–600 (2009).

    Article  Google Scholar 

  15. Pikul, J. H., Gang Zhang, H., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nature Commun. 4, 1732 (2013).

    Article  Google Scholar 

  16. Zhang, H., Yu, X. & Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotech. 6, 277–281 (2011).

    Article  Google Scholar 

  17. Ebner, M., Chung, D. W., García, R. E. & Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4, 1301278 (2014).

    Article  Google Scholar 

  18. Bae, C.-J., Erdonmez, C. K., Halloran, J. W. & Chiang, Y.-M. Design of battery electrodes with dual-scale porosity to minimize tortuosity and maximize performance. Adv. Mater. 25, 1254–1258 (2013).

    Article  Google Scholar 

  19. Dunn, B., Long, J. W. & Rolison, D. R. Rethinking multifunction in three dimensions for miniaturizing electrical energy storage. Electrochem. Soc. Interface 17, 49–53 (2008).

    Google Scholar 

  20. Du, W., Xue, N., Shyy, W. & Martins, J. R. R. A. A surrogate-based multi-scale model for mass transport and electrochemical kinetics in lithium-ion battery electrodes. J. Electrochem. Soc. 161, E3086–E3096 (2014).

    Article  Google Scholar 

  21. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  22. McRae, E., Billaud, D., Marêché, J. F. & Hérold, A. Basal plane resistivity of alkali metal-graphite compounds. Physica B+C 99, 489–493 (1980).

    Article  Google Scholar 

  23. Nemani, V. P., Harris, S. J. & Smith, K. C. Design of bi-tortuous, anisotropic graphite anodes for fast ion-transport in Li-ion batteries. J. Electrochem. Soc. 162, A1415–A1423 (2015).

    Article  Google Scholar 

  24. García-García, R. & García, R. E. Microstructural effects on the average properties in porous battery electrodes. J. Power Sources 309, 11–19 (2016).

    Article  Google Scholar 

  25. Wood, V. & Ebner, M. O. J. Method for the production of electrodes and electrodes made using such a method. US patent US2016/0093872 A1 (2014).

  26. Erb, R. M., Libanori, R., Rothfuchs, N. & Studart, A. R. Composites reinforced in three dimensions by using low magnetic fields. Science 335, 199–204 (2012).

    Article  MathSciNet  Google Scholar 

  27. Le Ferrand, H., Bouville, F., Niebel, T. P. & Studart, A. R. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Mater. 14, 1172–1179 (2015).

    Article  Google Scholar 

  28. Sommer, M. R., Erb, R. M. & Studart, A. R. Injectable materials with magnetically controlled anisotropic porosity. ACS Appl. Mater. Interfaces 4, 5086–5091 (2012).

    Article  Google Scholar 

  29. Erb, R. M., Segmehl, J., Charilaou, M., Löffler, J. F. & Studart, A. R. Non-linear alignment dynamics in suspensions of platelets under rotating magnetic fields. Soft Matter 8, 7604–7609 (2012).

    Article  Google Scholar 

  30. Yunker, P. J., Still, T., Lohr, M. A. & Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308–311 (2011).

    Article  Google Scholar 

  31. Doyle, M., Newman, J., Gozdz, A. S., Schmutz, C. N. & Tarascon, J.-M. Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143, 1890–1903 (1996).

    Article  Google Scholar 

  32. Lichtner, A. Z. et al. Dispersion, connectivity and tortuosity of hierarchical porosity composite SOFC cathodes prepared by freeze-casting. J. Eur. Ceram. Soc. 35, 585–595 (2015).

    Article  Google Scholar 

  33. Yamaguchi, S., Asahina, H., Hirasawa, K. A., Sato, T. & Mori, S. SEI film formation on graphite anode surfaces in lithium ion battery. Mol. Cryst. Liq. Cryst. Sci. Technol. A 322, 239–244 (1998).

    Article  Google Scholar 

  34. Billaud, D., Henry, F. X. & Willmann, P. Electrochemical synthesis of binary graphite-lithium intercalation compounds. Mater. Res. Bull. 28, 477–483 (1993).

    Article  Google Scholar 

  35. Tran, T. D. Rate effect on lithium-ion graphite electrode performance. J. Appl. Electrochem. 26, 1161–1167 (1996).

    Article  Google Scholar 

  36. Ebner, M. Designing Better Batteries: Visualization and Quantification of Microstructure and Degradation Mechanisms in Lithium Ion Battery Electrodes PhD thesis, ETH Zurich (2014).

  37. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682 (2012).

    Article  Google Scholar 

  38. Liu, Z. Q. Scale space approach to directional analysis of images. Appl. Opt. 30, 1369–1373 (1991).

    Article  Google Scholar 

  39. Doube, M. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).

    Article  Google Scholar 

  40. Geuzaine, C. & Remacle, J.-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).

    Article  MathSciNet  Google Scholar 

Download references


A.R.S. and F.B. acknowledge the financial support of the ETH Zürich and the Swiss National Science Foundation (grant 200020_146509). We are indebted to A. G. Bittermann and the Center for Optical and Electron microscopy of ETH Zürich (ScopeM) for the FIB-tomography measurement. Acknowledgements are also due to P. Novàk and N. Kränzlin for the XRD measurements, E. Maire for his contributions to the image analysis, D. Marinha for insightful discussions on ionic conductivity, and D. Billaud for sharing his knowledge on insertion compounds and ideas.

Author information

Authors and Affiliations



Experiments were designed by J.B., F.B., T.M., C.V., A.R.S. and conducted by J.B., F.B. and T.M. T.M. and J.B. developed the slurry composition. T.M. and F.B. developed the set-up and casting method. T.M. cast the electrodes for each test. J.B. prepared the cells for the electrochemical characterization and performed all the measurements and data processing. F.B. carried out the image analysis and FIB-tomography processing. J.B., F.B. and T.M. drafted the manuscript and figures. All authors discussed the results, their implications and revised the manuscript at all stages.

Corresponding authors

Correspondence to Claire Villevieille or André R. Studart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Table 1, Supplementary Notes, Supplementary Methods, Supplementary References. (PDF 6191 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Billaud, J., Bouville, F., Magrini, T. et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat Energy 1, 16097 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing