Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal–organic framework-based separator for lithium–sulfur batteries

Abstract

Lithium–sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal–organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium–sulfur batteries, which selectively sieves Li+ ions while efficiently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium–sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of MOF@GO separators in lithium–sulfur batteries.
Figure 2: Fabrication and structural characteristics of MOF@GO separators.
Figure 3: Polysulfide permeation measurements.
Figure 4: Electrochemical performance of lithium–sulfur batteries.
Figure 5: Rate performance and voltage profiles of lithium–sulfur batteries.

Similar content being viewed by others

References

  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    Article  Google Scholar 

  3. Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nature Commun. 5, 4759 (2014).

    Article  Google Scholar 

  4. Yao, H. B. et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nature Commun. 5, 3943 (2014).

    Article  Google Scholar 

  5. Zhou, G. M. et al. A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv. Mater. 26, 625–631 (2014).

    Article  Google Scholar 

  6. Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium-sulphur batteries. Nature Mater. 8, 500–506 (2009).

    Article  Google Scholar 

  7. Zhou, G. M., Paek, E., Hwang, G. S. & Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nature Commun. 6, 7760 (2015).

    Article  Google Scholar 

  8. Yin, L. C., Wang, J. L., Lin, F. J., Yang, J. & Nuli, Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environ. Sci. 5, 6966–6972 (2012).

    Article  Google Scholar 

  9. Chen, S. G. et al. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 134, 13252–13255 (2012).

    Article  Google Scholar 

  10. Seh, Z. W. et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Commun. 5, 5017 (2014).

    Article  Google Scholar 

  11. Seh, Z. W. et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Commun. 4, 1331 (2013).

    Article  Google Scholar 

  12. Liang, X., Garsuch, A. & Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015).

    Article  Google Scholar 

  13. Demir-Cakan, R. et al. Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154–16160 (2011).

    Article  Google Scholar 

  14. Zhou, J. W. et al. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy Environ. Sci. 7, 2715–2724 (2014).

    Article  Google Scholar 

  15. Zheng, J. M. et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14, 2345–2352 (2014).

    Article  Google Scholar 

  16. Yin, Y. X., Xin, S., Guo, Y. G. & Wan, L. J. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013).

    Article  Google Scholar 

  17. Park, K. et al. Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 8, 2389–2395 (2015).

    Article  Google Scholar 

  18. Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  Google Scholar 

  19. Wang, B., Cote, A. P., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008).

    Article  Google Scholar 

  20. Bai, S. et al. Distinct anion sensing by a 2D self-assembled Cu(I)-based metal–organic polymer with versatile visual colorimetric responses and efficient selective separations via anion exchange. J. Mater. Chem. A 1, 2970–2973 (2013).

    Article  Google Scholar 

  21. Talin, A. A. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343, 66–69 (2014).

    Article  Google Scholar 

  22. Mao, Y. Y. et al. General incorporation of diverse components inside metal-organic framework thin films at room temperature. Nature Commun. 5, 5532 (2014).

    Article  Google Scholar 

  23. Huang, J. Q. et al. Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energ. Environ. Sci. 7, 347–353 (2014).

    Article  Google Scholar 

  24. Yao, H. B. et al. Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ. Sci. 7, 3381–3390 (2014).

    Article  Google Scholar 

  25. Liang, X. et al. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nature Commun. 6, 5682 (2015).

    Article  Google Scholar 

  26. Peng, H. J. et al. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3, 1500268 (2016).

    Article  Google Scholar 

  27. Chung, S. H. & Manthiram, A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries. Adv. Funct. Mater. 24, 5299–5306 (2014).

    Article  Google Scholar 

  28. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  Google Scholar 

  29. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  Google Scholar 

  30. Su, Y. S. & Manthiram, A. Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Commun. 3, 1166 (2012).

    Article  Google Scholar 

  31. Huang, J. Q. et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 9, 3002–3011 (2015).

    Article  Google Scholar 

  32. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    Article  Google Scholar 

  33. Vijayakumar, M. et al. Molecular structure and stability of dissolved lithium polysulfide species. Phys. Chem. Chem. Phys. 16, 10923–10932 (2014).

    Article  Google Scholar 

  34. Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).

    Article  Google Scholar 

  35. Chen, S. R. et al. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochim. Acta 56, 9549–9555 (2011).

    Article  Google Scholar 

  36. Meini, S., Elazari, R., Rosenman, A., Garsuch, A. & Aurbach, D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J. Phys. Chem. Lett. 5, 915–918 (2014).

    Article  Google Scholar 

  37. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Mater. 12, 452–457 (2013).

    Article  Google Scholar 

  38. Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    Article  Google Scholar 

  39. Lerf, A. et al. Hydration behavior and dynamics of water molecules in graphite oxide. J. Phys. Chem. Solids 67, 1106–1110 (2006).

    Article  Google Scholar 

  40. Raidongia, K. & Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012).

    Article  Google Scholar 

  41. Scrosati, B. Conducting polymers: advanced materials for new design, rechargeable lithium batteries. Polym. Int. 47, 50–55 (1998).

    Article  Google Scholar 

  42. Barpanda, P. et al. LiZnSO4F made in an ionic liquid: a ceramic electrolyte composite for solid-state lithium batteries. Angew. Chem. Int. Ed. 50, 2526–2531 (2011).

    Article  Google Scholar 

  43. Zhu, K. et al. Synergetic effects of Al3+ doping and graphene modification on the electrochemical performance of V2O5 cathode materials. ChemSusChem 8, 1017–1025 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The partial financial support from Mitsubishi Motors Corporation is acknowledged. We thank Y. Wang for help with language support.

Author information

Authors and Affiliations

Authors

Contributions

S.B. designed and performed the experiments. K.Z. helped with synthesis of the graphene oxide materials and calculation of the ion conductivity. X.L. and S.W. provided advice about the electrochemical experiments. H.Z. designed and supervised the work.

Corresponding author

Correspondence to Haoshen Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–16, Supplementary Tables 1–2, Supplementary Notes 1–3, Supplementary References. (PDF 3173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Liu, X., Zhu, K. et al. Metal–organic framework-based separator for lithium–sulfur batteries. Nat Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing