Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient storage mechanisms for building better supercapacitors


Supercapacitors are electrochemical energy storage devices that operate on the simple mechanism of adsorption of ions from an electrolyte on a high-surface-area electrode. Over the past decade, the performance of supercapacitors has greatly improved, as electrode materials have been tuned at the nanoscale and electrolytes have gained an active role, enabling more efficient storage mechanisms. In porous carbon materials with subnanometre pores, the desolvation of the ions leads to surprisingly high capacitances. Oxide materials store charge by surface redox reactions, leading to the pseudocapacitive effect. Understanding the physical mechanisms underlying charge storage in these materials is important for further development of supercapacitors. Here we review recent progress, from both in situ experiments and advanced simulation techniques, in understanding the charge storage mechanism in carbon- and oxide-based supercapacitors. We also discuss the challenges that still need to be addressed for building better supercapacitors.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Examples of nanoporous carbon structures.
Figure 2: Characterization of pore wetting at null potential.
Figure 3: Desolvation of the ions in electrified nanopores.
Figure 4: Characterization of the charging dynamics of supercapacitors.
Figure 5: Different types of pseudocapacitive behaviour.
Figure 6: Nanohybrid supercapacitor set-up and characterization.
Figure 7: Evolution of the picture of the electrode/electrolyte interface in the past decade.


  1. 1

    Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, 1999).

    Google Scholar 

  2. 2

    Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).

    Google Scholar 

  3. 3

    Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). This paper demonstrates that microporous carbons can be used to maximize the capacitance, owing to the desolvation of the ions in subnanometre pores.

    Google Scholar 

  4. 4

    Toupin, M., Brousse, T. & Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004). This paper shows that MnO2-based supercapacitors can achieve very high specific capacitances highlighting the importance of pseudocapacitive mechanisms.

    Google Scholar 

  5. 5

    Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    Google Scholar 

  6. 6

    Béguin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    Google Scholar 

  7. 7

    Raccichini, R., Varzi, A., Passerini, S. & Scrosati, B. The role of graphene for electrochemical energy storage. Nature Mater. 14, 271–279 (2015).

    Google Scholar 

  8. 8

    Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nature Mater. 8, 621–629 (2009).

    Google Scholar 

  9. 9

    Brandt, A., Pohlmann, S., Varzi, A., Balducci, A. & Passerini, S. Ionic liquids in supercapacitors. MRS Bull. 38, 554–559 (2013).

    Google Scholar 

  10. 10

    Helmholtz, H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chem. 165, 211–233 (1853).

    Google Scholar 

  11. 11

    Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J. Phys. Chem. B 105, 6880–6887 (2001).

    Google Scholar 

  12. 12

    Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. On the mechanism of selective electroadsorption in the pores of carbon molecular sieves. Langmuir 21, 3198–3202 (2005).

    Google Scholar 

  13. 13

    Wang, S., Minami, D. & Kaneko, K. Comparative pore structural analysis of highly porous graphene monoliths treated at different temperatures with adsorption of N2 at 77.4 K and of Ar at 87.3 K and 77.4 K. Micropor. Mesopor. Mater. 209, 72–78 (2015).

    Google Scholar 

  14. 14

    Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

    Google Scholar 

  15. 15

    Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 87, 1051–1069 (2015).

    Google Scholar 

  16. 16

    Kaneko, K., Ishii, C., Ruike, M. & Kuwabara, H. Origin of superhigh microcrystalline graphitic structures of activated carbons. Carbon 30, 1075–1088 (1992).

    Google Scholar 

  17. 17

    Setoyama, N., Suzuki, T. & Kaneko, K. Simulation study on the relationship between a high resolution αs-plot and the pore size distribution for activated carbon. Carbon 36, 1459–1467 (1998).

    Google Scholar 

  18. 18

    Neimark, A. V., Lin, Y., Ravikovitch, P. I. & Thommes, M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617–1628 (2009). This paper provides the theoretical basis of density functional theory, which is now the most used method for characterizing the surface area of microporous carbons.

    Google Scholar 

  19. 19

    Centeno, T. A., Sereda, O. & Stoeckli, F. Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern. Phys. Chem. Chem. Phys. 13, 12403–12406 (2011).

    Google Scholar 

  20. 20

    Bandosz, T. J. et al. in Chemistry and Physics of Carbon 41–228 (Marcel Dekker, 2001).

    Google Scholar 

  21. 21

    Bousige, C. et al. Realistic molecular model of kerogen's nanostructure. Nature Mater. 15, 576–582 (2016).

    Google Scholar 

  22. 22

    Forse, A. C. et al. New insights into the structure of nanoporous carbons from NMR, Raman, and pair distribution function analysis. Chem. Mater. 27, 6848–6857 (2015).

    Google Scholar 

  23. 23

    Palmer, J. C. et al. Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48, 1116–1123 (2010).

    Google Scholar 

  24. 24

    Palmer, J. C. & Gubbins, K. E. Atomistic models for disordered nanoporous carbons using reactive force fields. Micropor. Mesopor. Mater. 154, 24–37 (2012).

    Google Scholar 

  25. 25

    Wang, H. et al. Real-time NMR studies of electrochemical double-layer capacitors. J. Am. Chem. Soc. 133, 19270–19273 (2011).

    Google Scholar 

  26. 26

    Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nature Mater. 14, 812–819 (2015). This paper shows, by combining in situ electrochemical and spectroscopy techniques that different ion adsorption mechanisms can dominate the charging process of supercapacitors depending on the polarization of the electrode.

    Google Scholar 

  27. 27

    Boukhalfa, S. et al. In-situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors. ACS Nano 8, 2495–2503 (2014).

    Google Scholar 

  28. 28

    Bañuelos, J. L. et al. Densification of ionic liquid molecules within a hierarchical nanoporous carbon structure revealed by small angle scattering and molecular dynamics simulation. Chem. Mater. 26, 1144–1153 (2014).

    Google Scholar 

  29. 29

    Deschamps, M. et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nature Mater. 12, 351–358 (2013).

    Google Scholar 

  30. 30

    Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Mater. 11, 306–310 (2012). This paper provides the first quantitative picture of the structure of an ionic liquid adsorbed inside realistically modelled microporous carbon electrodes.

    Google Scholar 

  31. 31

    Merlet, C. et al. Highly confined ions store charge more efficiently in supercapacitors. Nature Commun. 4, 2701 (2013).

    Google Scholar 

  32. 32

    Shim, T. & Kim, H. J. Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. ACS Nano 4, 2345–2355 (2010).

    Google Scholar 

  33. 33

    Merlet, C., Forse, A. C., Griffin, J., Frenkel, D. & Grey, C. P. Lattice simulation method to model diffusion and NMR spectra in porous materials. J. Chem. Phys. 142, 094701 (2015).

    Google Scholar 

  34. 34

    Boukhalfa, S., He, L., Melnichenko, Y. B. & Yushin, G. Small-angle neutron scattering for in situ probing of ion adsorption inside micropores. Angew. Chem. Int. Ed. 52, 4618–4622 (2013).

    Google Scholar 

  35. 35

    Kondrat, S. & Kornyshev, A. Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors? Nanoscale Horiz. 1, 45–52 (2016).

    Google Scholar 

  36. 36

    Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).

    Google Scholar 

  37. 37

    Galhena, D. T., Bayer, B. C., Hofmann, S. & Amaratunga, G. A. Understanding capacitance variation in sub-nanometer pores by in situ tuning of interlayer constrictions. ACS Nano 10, 747–754 (2016).

    Google Scholar 

  38. 38

    Raymundo-Pinero, E., Kierzek, K., Machnikowski, J. & Béguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498–2507 (2006).

    Google Scholar 

  39. 39

    Levi, M. D., Sigalov, S., Aurbach, D. & Daikhin, L. In situ electrochemical quartz crystal admittance methodology for tracking compositional and mechanical changes in porous carbon electrodes. J. Phys. Chem. C 117, 14876–14889 (2013).

    Google Scholar 

  40. 40

    Levi, M. D., Salitra, G., Levy, N., Aurbach, D. & Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nature Mater. 8, 872–875 (2009). This paper demonstrates that it is possible to monitor the gravimetric response of microporous carbons during the ion adsorption inside the pores.

    Google Scholar 

  41. 41

    Sigalov, S., Levi, M. D., Daikhin, L., Salitra, G. & Aurbach, D. Electrochemical quartz crystal admittance studies of ion adsorption on nanoporous composite carbon electrodes in aprotic solutions. J. Solid State Electrochem. 18, 1335–1344 (2014).

    Google Scholar 

  42. 42

    Ohkubo, T. et al. Restricted hydration structures of Rb and Br ions confined in slit-shaped carbon nanospace. J. Am. Chem. Soc. 124, 11860–11861 (2002). This paper shows that desolvation of aqueous ions occurs under extreme confinement using extended X-ray absorption fine structure experiments.

    Google Scholar 

  43. 43

    Tsai, W.-Y., Taberna, P.-L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136, 8722–8728 (2014).

    Google Scholar 

  44. 44

    Fedorov, M. V. & Kornyshev, A. A. Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978–3036 (2014).

    Google Scholar 

  45. 45

    Xing, L., Vatamanu, J., Borodin, O. & Bedrov, D. On the atomistic nature of capacitance enhancement generated by ionic liquid electrolyte confined in subnanometer pores. J. Phys. Chem. Lett. 4, 132–140 (2013).

    Google Scholar 

  46. 46

    Freise, V. Zur theorie der diffusendoppeltschicht. Z. Elektrochem. 56, 822–827 (1952).

    Google Scholar 

  47. 47

    Kornyshev, A. A. Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111, 5545–5557 (2007).

    Google Scholar 

  48. 48

    Limmer, D. T. et al. Charge fluctuations in nanoscale capacitors. Phys. Rev. Lett. 111, 106102 (2013).

    Google Scholar 

  49. 49

    Merlet, C. et al. The electric double layer has a life of its own. J. Phys. Chem. C 118 18291–18298 (2014).

    Google Scholar 

  50. 50

    Kornyshev, A. A. & Qiao, R. Three-dimensional double layers. J. Phys. Chem. C 118, 18285–18290 (2014).

    Google Scholar 

  51. 51

    Gebbie, M. A. et al. Ionic liquids behave as dilute electrolyte solutions. Proc. Natl Acad. Sci. USA 110, 9674–9679 (2013).

    Google Scholar 

  52. 52

    Perkin, S., Salanne, M., Madden, P. & Lynden-Bell, R. Is a stern and diffuse layer model appropriate to ionic liquids at surfaces? Proc. Natl Acad. Sci. USA 110, E4121 (2013).

    Google Scholar 

  53. 53

    Bozym, D. et al. Anomalous capacitance maximum of the glassy carbon–ionic liquid interface through dilution with organic solvents. J. Phys. Chem. Lett. 6, 2644–2648 (2015).

    Google Scholar 

  54. 54

    Lee, A. A., Vella, D., Perkin, S. & Goriely, A. Are room-temperature ionic liquids dilute electrolyte? J. Phys. Chem. Lett. 6, 159–163 (2015).

    Google Scholar 

  55. 55

    Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).

    Google Scholar 

  56. 56

    Kondrat, S. & Kornyshev, A. A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2011). This paper explains the increase of capacitance in microporous carbons by the formation of image charges on the walls which screen the electrostatic interactions between the ions, leading to the formation of a ‘superionic’ state.

    Google Scholar 

  57. 57

    Kondrat, S., Georgi, N., Fedorov, M. V. & Kornyshev, A. A. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Phys. Chem. Chem. Phys. 13, 11359–11366 (2011).

    Google Scholar 

  58. 58

    Griffin, J. M. et al. Ion counting in supercapacitor electrode using NMR spectroscopy. Faraday Discuss. 176, 49–68 (2014).

    Google Scholar 

  59. 59

    Pean, C. et al. Confinement, desolvation and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137, 12627–12632 (2015).

    Google Scholar 

  60. 60

    Richey, F. W., Dyatkin, B., Gogotsi, Y. & Elabd, Y. A. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135, 12818–12826 (2013).

    Google Scholar 

  61. 61

    Prehal, C. et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in-situ small angle X-ray scattering. Energy Environ. Sci. 8, 1725–1735 (2015).

    Google Scholar 

  62. 62

    Ilott, A. J., Trease, N. M., Grey, C. P. & Jerschow, A. Multinuclear in situ magnetic resonance imaging of electrochemical double-layer capacitors. Nature Commun. 5, 4536 (2014).

    Google Scholar 

  63. 63

    Kondrat, S., Wu, P., Qiao, R. & Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nature Mater. 13, 387–393 (2014).

    Google Scholar 

  64. 64

    He, Y. et al. The importance of ion packing on the dynamics of ionic liquids during micropore charging. J. Phys. Chem. Lett. 7, 36–42 (2016).

    Google Scholar 

  65. 65

    Pean, C. et al. On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8, 1576–1583 (2014).

    Google Scholar 

  66. 66

    Augustyn, C., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    Google Scholar 

  67. 67

    Kim, J. W., Augustyn, V. & Dunn, B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5 . Adv. Energy Mater. 2, 141–148 (2012).

    Google Scholar 

  68. 68

    Come, J. et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014).

    Google Scholar 

  69. 69

    Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T. & Rolison, D. R. Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B 106, 12677–12683 (2002).

    Google Scholar 

  70. 70

    Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Mater. 12, 518–522 (2013). This paper reports on a pseudocapacitance mechanism based on lithium ion intercalation and defines the structural characteristics which are necessary for this process to occur.

    Google Scholar 

  71. 71

    Brousse, T., Belanger, D. & Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).

    Google Scholar 

  72. 72

    Kim, H.-S., Cook, J. B., Tolbert, S. H. & Dunn, B. The development of pseudocapacitive properties in nanosized-MoO2 . J. Electrochem. Soc. 162, A5083–A5090 (2015).

    Google Scholar 

  73. 73

    Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    Google Scholar 

  74. 74

    Augustyn, V. et al. Lithium-ion storage properties of titanium oxide nanosheets. Mater. Horiz. 1, 219–233 (2014).

    Google Scholar 

  75. 75

    Athouel, L. et al. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C 112, 7270–7277 (2008).

    Google Scholar 

  76. 76

    Wei, W., Cui, X., Chen, W. & Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011).

    Google Scholar 

  77. 77

    Ghodbane, O., Pascal, J.-L. & Favier, F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130–1139 (2009).

    Google Scholar 

  78. 78

    Ghodbane, O., Ataherian, F., Wu, N.-L. & Favier, F. In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors. J. Power Sources 206, 454–462 (2012).

    Google Scholar 

  79. 79

    Rangom, Y., Tang, X. & Nazar, L. F. Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9, 7248–7255 (2015).

    Google Scholar 

  80. 80

    Zhu, Y. et al. A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci. 6, 3665–3675 (2013).

    Google Scholar 

  81. 81

    Aravindan, V., Gnanaraj, J., Lee, Y. S. & Madhavi, S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114, 11619–11635 (2014).

    Google Scholar 

  82. 82

    Naoi, K., Ishimoto, S., Isobe, Y. & Aoyagi, S. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 195, 6250–6254 (2010).

    Google Scholar 

  83. 83

    Naoi, K., Ishimoto, S., Ogihara, N., Nakagawa, Y. & Hatta, S. Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors. J. Electrochem. Soc. 156, A52–A59 (2009).

    Google Scholar 

  84. 84

    Naoi, K., Ishimoto, S., Miyamoto, J. & Naoi, W. Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5, 9363–9373 (2012). This paper reports on the perspectives opened by combining a negative graphite electrode of a Li-ion battery with a capacitive porous-carbon positive electrode.

    Google Scholar 

  85. 85

    Naoi, K., Naoi, W., Aoyagi, S., Miyamoto, J. & Kamino, T. New generation ‘nanohybrid supercapacitor’. Acc. Chem. Res. 46, 1075–1083 (2012).

    Google Scholar 

  86. 86

    Vatamanu, J. & Bedrov, D. Capacitive energy storage: current and future challenges. J. Phys. Chem. Lett. 6, 3594–3609 (2015).

    Google Scholar 

  87. 87

    Lin, T. et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015).

    Google Scholar 

  88. 88

    Curtarolo, S. et al. The high-throughput highway to computational materials design. Nature Mater. 12, 191–201 (2013).

    Google Scholar 

  89. 89

    Schutter, C., Husch, T., Korth, M. & Balducci, A. Toward new solvents for EDLCs: from computational screening to electrochemical validation. J. Phys. Chem. C 119, 13413–13424 (2015).

    Google Scholar 

  90. 90

    Pognon, G., Brousse, T., Demarconnay, L. & Bélanger, D. Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J. Power Sources 196, 4117–4122 (2011).

    Google Scholar 

  91. 91

    Abbas, Q. et al. Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes. J. Electrochem. Soc. 162, A5148–A5157 (2015).

    Google Scholar 

  92. 92

    Pohlmann, S. et al. Mixtures of azepanium based ionic liquids and propylene carbonate as high voltage electrolytes for supercapacitors. Electrochim. Acta 153, 426–432 (2015).

    Google Scholar 

  93. 93

    Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature Nanotech. 10, 313–318 (2015).

    Google Scholar 

  94. 94

    Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    Google Scholar 

  95. 95

    Shi, C. Y. et al. Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function. Phys. Rev. Lett. 112, 125501 (2014).

    Google Scholar 

  96. 96

    Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and. in situ electronic conductance measurements. Adv. Energ. Mater. 5, 1400815 (2015).

    Google Scholar 

  97. 97

    Soloveichik, G. L. Flow batteries: current status and trends. Chem. Rev. 115, 11533–11558 (2015).

    Google Scholar 

  98. 98

    Kwon, C.-H. et al. High power biofuel cells textiles from woven biscrolled carbon nanotube yarns. Nature Commun. 5, 3928 (2014).

    Google Scholar 

  99. 99

    Presser, V. et al. The electrochemical flow capacitor: a new concept for rapid energy storage and recovery. Adv. Energ. Mater. 2, 895–902 (2012).

    Google Scholar 

  100. 100

    Brogioli, D. Extracting renewable energy from a salinity difference using a capacitor. Phys. Rev. Lett. 103, 058501 (2009).

    Google Scholar 

  101. 101

    Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Google Scholar 

  102. 102

    Wang, J. Carbon nanotube based electrochemical biosensors. Electroanalysis 17, 7–14 (2005).

    Google Scholar 

  103. 103

    Mirica, K. A., Azzarelli, J. M., Weis, J. G., Schnorr, J. M. & Swager, T. M. Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc. Natl Acad. Sci. USA 110, E3265–E3270 (2013).

    Google Scholar 

Download references


We thank our many co-workers who have contributed to the work presented in this review. C.P.G. thanks J. Griffin for his critical reading of the manuscript. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ ERC grant agreement no. 102539.

Author information



Corresponding author

Correspondence to P. Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salanne, M., Rotenberg, B., Naoi, K. et al. Efficient storage mechanisms for building better supercapacitors. Nat Energy 1, 16070 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing