Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced photovoltaic energy conversion using thermally based spectral shaping


Solar thermophotovoltaic devices have the potential to enhance the performance of solar energy harvesting by converting broadband sunlight to narrow-band thermal radiation tuned for a photovoltaic cell. A direct comparison of the operation of a photovoltaic with and without a spectral converter is the most critical indicator of the promise of this technology. Here, we demonstrate enhanced device performance through the suppression of 80% of unconvertible photons by pairing a one-dimensional photonic crystal selective emitter with a tandem plasma–interference optical filter. We measured a solar-to-electrical conversion rate of 6.8%, exceeding the performance of the photovoltaic cell alone. The device operates more efficiently while reducing the heat generation rates in the photovoltaic cell by a factor of two at matching output power densities. We determined the theoretical limits, and discuss the implications of surpassing the Shockley–Queisser limit. Improving the performance of an unaltered photovoltaic cell provides an important framework for the design of high-efficiency solar energy converters.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Operating principle of STPVs and comparison with solar PVs.
Figure 2: Theoretical performance of a thermal spectral converter.
Figure 3: Spectrally engineered STPV device.
Figure 4: Experimental results of efficiency and heat generation.
Figure 5: Nanophotonic material set in the radiative limit.


  1. 1

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  Google Scholar 

  2. 2

    Wegh, R. T. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999).

    Article  Google Scholar 

  3. 3

    Trupke, T., Green, M. A. & Würfel, P. Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668–1674 (2002).

    Article  Google Scholar 

  4. 4

    Shalav, A., Richards, B. S. & Green, M. A. Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol. Energy Mater. Sol. Cells 91, 829–842 (2007).

    Article  Google Scholar 

  5. 5

    Richards, B. S. Luminescent layers for enhanced silicon solar cell performance: down-conversion. Sol. Energy Mater. Sol. Cells 90, 1189–1207 (2006).

    Article  Google Scholar 

  6. 6

    Manor, A., Martin, L. & Rotschild, C. Conservation of photon rate in endothermic photoluminescence and its transition to thermal emission. Optica 2, 585–588 (2015).

    Article  Google Scholar 

  7. 7

    Wang, H.-Q., Batentschuk, M., Osvet, A., Pinna, L. & Brabec, C. J. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011).

    Article  Google Scholar 

  8. 8

    Fix, T., Rinnert, H., Blamire, M. G., Slaoui, A. & MacManus-Driscoll, J. L. Nd:SrTiO3 thin films as photon downshifting layers for photovoltaics. Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).

    Article  Google Scholar 

  9. 9

    Boccolini, A., Marques-Hueso, J., Chen, D., Wang, Y. & Richards, B. S. Physical performance limitations of luminescent down-conversion layers for photovoltaic applications. Sol. Energy Mater. Sol. Cells 122, 8–14 (2014).

    Article  Google Scholar 

  10. 10

    Chan, W. R. et al. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proc. Natl Acad. Sci. USA 110, 5309–5314 (2013).

    Article  Google Scholar 

  11. 11

    Datas, A., Chubb, D. L. & Veeraragavan, A. Steady state analysis of a storage integrated solar thermophotovoltaic (SISTPV) system. Sol. Energy 96, 33–45 (2013).

    Article  Google Scholar 

  12. 12

    Dashiell, M. W. et al. Quaternary InGaAsSb thermophotovoltaic diodes. IEEE Trans. Electron Devices 53, 2879–2891 (2006).

    Article  Google Scholar 

  13. 13

    Stelmakh, V. et al. SPIE Sens. Technol. Appl. (International Society for Optics and Photonics, 2014).

    Google Scholar 

  14. 14

    Rinnerbauer, V. et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Opt. Express 21, 11482–11491 (2013).

    Article  Google Scholar 

  15. 15

    Wang, Z. et al. Tunneling-enabled spectrally selective thermal emitter based on flat metallic films. Appl. Phys. Lett. 106, 101104 (2015).

    Article  Google Scholar 

  16. 16

    Li, W. et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7921 (2014).

    Article  Google Scholar 

  17. 17

    Ungaro, C., Gray, S. K. & Gupta, M. C. Solar thermophotovoltaic system using nanostructures. Opt. Express 23, A1149 (2015).

    Article  Google Scholar 

  18. 18

    Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nature Nanotech. 9, 126–130 (2014).

    Article  Google Scholar 

  19. 19

    Rinnerbauer, V. et al. Metallic photonic crystal absorber–emitter for efficient spectral control in high-temperature solar thermophotovoltaics. Adv. Energy Mater. 4, 1400334 (2014).

    Article  Google Scholar 

  20. 20

    Shimizu, M., Kohiyama, A. & Yugami, H. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter. J. Photon. Energy 5, 053099 (2015).

    Article  Google Scholar 

  21. 21

    Shimizu, M., Kohiyama, A. & Yugami, H. SPIE Photonics Europe (International Society for Optics and Photonics, 2014).

    Google Scholar 

  22. 22

    Rinnerbauer, V. et al. Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters. J. Vac. Sci. Technol. B 31, 011802 (2013).

    Article  Google Scholar 

  23. 23

    Ortabasi, U. Rugate technology for thermophotovoltaic (TPV) applications: a new approach to near perfect filter performance. AIP Conf. Proc. Vol. 653, 249–258 (AIP, 2003).

  24. 24

    Harder, N.-P. & Wurfel, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 18, S151–S157 (2003).

    Article  Google Scholar 

  25. 25

    Lenert, A. et al. Addendum: a nanophotonic solar thermophotovoltaic device. Nature Nanotech. 10, 563 (2015).

    Article  Google Scholar 

  26. 26

    Chubb, D. Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier B. V., 2007).

    Google Scholar 

  27. 27

    Coutts, T. J. & Ward, J. S. Thermophotovoltaic and photovoltaic conversion at high-flux densities. IEEE Trans. Electron Devices 46, 2145–2153 (1999).

    Article  Google Scholar 

  28. 28

    Lin, M., Shyu, F. & Chen, R. Optical properties of well-aligned multiwalled carbon nanotube bundles. Phys. Rev. B 61, 14114–14118 (2000).

    Article  Google Scholar 

  29. 29

    Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 106, 6044–6047 (2009).

    Article  Google Scholar 

  30. 30

    Yang, Z.-P., Ci, L., Bur, J. A., Lin, S.-Y. & Ajayan, P. M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 8, 446–451 (2008).

    Article  Google Scholar 

  31. 31

    Lenert, A., Nam, Y., Bierman, D. M. & Wang, E. N. Role of spectral non-idealities in the design of solar thermophotovoltaics. Opt. Express 22, A1604–A1618 (2014).

    Article  Google Scholar 

  32. 32

    Rahmlow, T. D. et al. AIP Conf. Proc. 738, 180–188 (2004).

    Article  Google Scholar 

  33. 33

    Bierman, D. M., Lenert, A. & Wang, E. N. Investigation of design parameters in planar solar thermophotovoltaic devices. 15th International Heat Transfer Conference (IHTC-15) (2014).

  34. 34

    Wysocki, J. J. & Rappaport, P. Effect of temperature on photovoltaic solar energy conversion. J. Appl. Phys. 31, 571–578 (1960).

    Article  Google Scholar 

  35. 35

    Nessim, G. D. et al. Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Lett. 8, 3587–3593 (2008).

    Article  Google Scholar 

  36. 36

    Fujii, T. PDMS-based microfluidic devices for biomedical applications. Microelectron. Eng. 61–62, 907–914 (2002).

    Article  Google Scholar 

  37. 37

    Mark, J. Polymer Data Handbook (Oxford Univ. Press, 1999).

    Google Scholar 

Download references


This work was supported as part of the Solid-State Solar Thermal Energy Conversion (S3TEC) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award no. DE-FG02-09ER46577. The authors thank C. Wang from Lincoln Laboratory for providing the InGaAsSb cells; H. Mutha, D. Li and C.V. Thompson’s group (for help with CNT growth); W. Lee and IDAX Microelectronics Labs, Inc. (PV cell packaging); K. Broderick and Microsystems Technology Laboratories (spectral converter/aperture fabrication); K. Bagnall and J. Tong (optical configuration advice); the Device Research Lab (for critique); M. N. Luckyanova, G. Chen and the Nanoengineering group (for advice and experimental aid).

Author information




All authors contributed extensively to this work. D.M.B. and A.L. designed the experimental and theoretical studies, constructed the experimental model, and wrote the paper. D.M.B. and B.B. designed and fabricated components for the device scale-up. D.M.B. wrote the code for the theoretical study and executed the experiments. W.R.C. designed and fabricated the emitter. I.C., M.S. and E.N.W. supervised and guided the project.

Corresponding author

Correspondence to Evelyn N. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Figures 1–5 and Supplementary References. (PDF 684 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bierman, D., Lenert, A., Chan, W. et al. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat Energy 1, 16068 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing