Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design of redox mediators for advanced Li–O2 batteries

Abstract

The discovery of effective catalysts is an important step towards achieving Li–O2 batteries with long cycle life and high round-trip efficiency. Soluble-type catalysts or redox mediators (RMs) possess great advantages over conventional solid catalysts, generally exhibiting much higher efficiency. Here, we select a series of organic RM candidates as a model system to identify the key descriptor in determining the catalytic activities and stabilities in Li–O2 cells. It is revealed that the level of ionization energies, readily available parameters from a database of the molecules, can serve such a role when comparing with the formation energy of Li2O2 and the highest occupied molecular orbital energy of the electrolyte. It is demonstrated that they are critical in reducing the overpotential and improving the stability of Li–O2 cells, respectively. Accordingly, we propose a general principle for designing feasible catalysts and report a RM, dimethylphenazine, with a remarkably low overpotential and high stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of RM for Li–O2 batteries.
Figure 2: Electrochemical properties of various RMs.
Figure 3: Gas analyses on effect of RMs.
Figure 4: Molecular orbital energies of RMs and TEGDME.
Figure 5: Cyclic voltammetry of RMs.
Figure 6: Effects of DMPZ as a catalyst for Li–O2 batteries.

Similar content being viewed by others

References

  1. Liu, T. et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015).

    Article  Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    Article  Google Scholar 

  3. Black, R. et al. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 134, 2902–2905 (2012).

    Article  Google Scholar 

  4. Lim, H.-D. et al. Enhanced power and rechargeability of a Li−O2 battery based on a hierarchical-fibril CNT electrode. Adv. Mater. 25, 1348–1352 (2013).

    Article  Google Scholar 

  5. Xu, J.-J. et al. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nature Commun. 4, 2438 (2013).

    Article  Google Scholar 

  6. Lu, J. et al. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014).

    Article  Google Scholar 

  7. Li, F. et al. The water catalysis at oxygen cathodes of lithium-oxygen cells. Nature Commun. 6, 7843 (2015).

    Article  Google Scholar 

  8. Balaish, M., Kraytsberg, A. & Ein-Eli, Y. A critical review on lithium-air battery electrolytes. Phys. Chem. Chem. Phys. 16, 2801–2822 (2014).

    Article  Google Scholar 

  9. Lim, H.-D. et al. The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte. Chem. Commun. 48, 8374–8376 (2012).

    Article  Google Scholar 

  10. Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nature Chem. 7, 50–56 (2015).

    Article  Google Scholar 

  11. Zhu, Y. et al. MnOx decorated CeO2 nanorods as cathode catalyst for rechargeable lithium-air batteries. J. Mater. Chem. A 3, 13563–13567 (2015).

    Article  Google Scholar 

  12. Black, R., Adams, B. & Nazar, L. F. Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater. 2, 801–815 (2012).

    Article  Google Scholar 

  13. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    Article  Google Scholar 

  14. McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    Article  Google Scholar 

  15. Liu, S. et al. Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li-O2 batteries. J. Mater. Chem. A 1, 12033–12037 (2013).

    Article  Google Scholar 

  16. Cheng, F. & Chen, J. Lithium-air batteries: something from nothing. Nature Chem. 4, 962–963 (2012).

    Article  Google Scholar 

  17. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem. 3, 546–550 (2011).

    Article  Google Scholar 

  18. Lu, Y.-C. et al. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

    Article  Google Scholar 

  19. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012).

    Article  Google Scholar 

  20. Ryu, W.-H. et al. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li–O2 batteries. Nano Lett. 13, 4190–4197 (2013).

    Article  Google Scholar 

  21. McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J. Am. Chem. Soc. 133, 18038–18041 (2011).

    Article  Google Scholar 

  22. Chen, Y. et al. Charging a Li–O2 battery using a redox mediator. Nature Chem. 5, 489–494 (2013).

    Article  Google Scholar 

  23. Lim, H.-D. et al. Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926–3931 (2014).

    Article  Google Scholar 

  24. Chase, G. V. et al. Soluble oxygen evolving catalysts for rechargeable metal-air batteries. US patent US2011/033821 (2011).

  25. Wang, Y. & Xia, Y. Li-O2 batteries: an agent for change. Nature Chem. 5, 445–447 (2013).

    Article  Google Scholar 

  26. Yu, M., Ren, X., Ma, L. & Wu, Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging. Nature Commun. 5, 5111 (2014).

    Article  Google Scholar 

  27. Bergner, B. J. et al. TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    Article  Google Scholar 

  28. Sun, D. et al. A solution-phase bifunctional catalyst for lithium–oxygen batteries. J. Am. Chem. Soc. 136, 8941–8946 (2014).

    Article  Google Scholar 

  29. Paduszek, B. & Kalinowski, M. K. Redox behaviour of phenothiazine and phenazine in organic solvents. Electrochim. Acta 28, 639–642 (1983).

    Article  Google Scholar 

  30. Ionization energy evaluation in NIST Chemistry WebBook NIST Standard Reference Database Number 69 (NIST, 2016); http://webbook.nist.gov

  31. Cederbaum, L. S. & Domcke, W. Theoretical aspects of ionization potentials and photoelectron spectroscopy: a Green’s function approach. Adv. Chem. Phys. 39, 205–344 (1977).

    Google Scholar 

  32. Gleiter, R. et al. Photoelectron and electronic absorption spectra of tetrathiafulvalene and related compounds. Ber. Bunsenges. Phys. Chem. 79, 1218–1226 (1975).

    Article  Google Scholar 

  33. Rabalais, J. W. et al. Electron spectroscopy of open-shell systems: spectra of Ni(C5H5)2, Fe(C5H5)2, Mn(C5H5)2, and Cr(C5H5)2 . J. Chem. Phys. 57, 1185–1192 (1972).

    Article  Google Scholar 

  34. Foster, R. Ionization potentials of electron donors. Nature 183, 1253 (1959).

    Article  Google Scholar 

  35. Maier, J. P. Photoelectron spectroscopy of peri-amino naphthalenes. Helv. Chim. Acta 57, 994–1003 (1974).

    Article  Google Scholar 

  36. Egdell, R., Green, J. C. & Rao, C. N. R. Photoelectron spectra of substituted benzenes. Chem. Phys. Lett. 33, 600–607 (1975).

    Article  Google Scholar 

  37. Rozeboom, M. D., Houk, K. N., Searles, S. & Seyedrezai, S. E. Photoelectron spectroscopy of N-aryl cyclic amines. Variable conformations and relationships to gas- and solution-phase basicities. J. Am. Chem. Soc. 104, 3448–3453 (1982).

    Article  Google Scholar 

  38. Matsen, F. A. Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons. J. Chem. Phys. 24, 602–606 (1956).

    Article  Google Scholar 

  39. Fraser-Monteiro, M. L. et al. Thermochemistry and dissociation dynamics of state-selected C4H8O2+ ions. 1. 1,4-dioxane. J. Phys. Chem. 86, 739–747 (1982).

    Article  Google Scholar 

  40. Watanabe, K., Nakayama, T. & Mottl, J. Ionization potentials of some molecules. J. Quant. Spectrosc. Radiat. Transfer 2, 369–382 (1962).

    Article  Google Scholar 

  41. Chen, Y., Shen, L. & Li, X. Effects of heteroatoms of tetracene and pentacene derivatives on their stability and singlet fission. J. Phys. Chem. A 118, 5700–5708 (2014).

    Article  Google Scholar 

  42. Liang, Z. et al. Unexpected photooxidation of H-bonded tetracene. Org. Lett. 10, 2007–2010 (2008).

    Article  Google Scholar 

  43. Khetan, A., Pitsch, H. & Viswanathan, V. Identifying descriptors for solvent stability in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 5, 1318–1323 (2014).

    Article  Google Scholar 

  44. Khetan, A., Pitsch, H. & Viswanathan, V. Solvent degradation in nonaqueous Li-O2 batteries: oxidative stability versus H-abstraction. J. Phys. Chem. Lett. 5, 2419–2424 (2014).

    Article  Google Scholar 

  45. McCloskey, B. D. et al. Limitations in rechargeability of Li-O2 batteries and possible origins. J. Phys. Chem. Lett. 3, 3043–3047 (2012).

    Article  Google Scholar 

  46. Bryantsev, V. S. et al. The identification of stable solvents for nonaqueous rechargeable Li-air batteries. J. Electrochem. Soc. 160, A160-A171 (2013).

    Google Scholar 

  47. Bryantsev, V. S. Predicting the stability of aprotic solvents in Li-air batteries: pKa calculations of aliphatic C–H acids in dimethyl sulfoxide. Chem. Phys. Lett. 558, 42–47 (2013).

    Article  Google Scholar 

  48. Bryantsev, V. S. et al. Predicting solvent stability in aprotic electrolyte Li–air batteries: nucleophilic substitution by the superoxide anion radical (O2). J. Phys. Chem. A 115, 12399–12409 (2011).

    Article  Google Scholar 

  49. Garcia-Lastra, J. M., Rostgaard, C., Rubio, A. & Thygesen, K. S. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces. Phys. Rev. B 80, 245427 (2009).

    Article  Google Scholar 

  50. Johnson, P. D. & Hulbert, S. L. Inverse-photoemission studies of adsorbed diatomic molecules. Phys. Rev. B 35, 9427–9436 (1987).

    Article  Google Scholar 

  51. Repp, J. et al. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  Google Scholar 

  52. Kundu, D., Black, R., Adams, B. & Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium–oxygen batteries. ACS Cent. Sci. 1, 510–515 (2015).

    Article  Google Scholar 

  53. Takimiya, K., Yamamoto, T., Ebata, H. & Izawa, T. Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors. Sci. Technol. Adv. Mater. 8, 273–276 (2007).

    Article  Google Scholar 

  54. Nelson, R. F., Leedy, D. W., Seo, E. T. & Adams, R. Anodic oxidation of 5,10-dihydro-5,10-dimethylphenazine. Z. Anal. Chem. 224, 184–196 (1966).

    Article  Google Scholar 

  55. Adams, B. D. et al. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013).

    Article  Google Scholar 

  56. Frisch, M. et al. Gaussian 09 Revision D 1 (Gaussian, 2009).

    Google Scholar 

  57. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  Google Scholar 

  58. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  Google Scholar 

  59. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  Google Scholar 

  60. Schäfer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Article  Google Scholar 

  61. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Article  Google Scholar 

  62. Klaumünzer, B., Kröner, D. & Saalfrank, P. (TD-)DFT calculation of vibrational and vibronic spectra of riboflavin in solution. J. Phys. Chem. B 114, 10826–10834 (2010).

    Article  Google Scholar 

  63. Trasatti, S. The absolute electrode potential: an explanatory note (Recommendations 1986). Pure Appl. Chem. 58, 955–966 (1986).

    Article  Google Scholar 

  64. Gritzner, G. Standard electrode potentials of M + |M couples in non-aqueous solvents (molecular liquids). J. Mol. Liq. 156, 103–108 (2010).

    Article  Google Scholar 

  65. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models 2nd edn (Wiley, 2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the HMC (Hyundai Motor Company), the Project Code (IBS-R006-G1), and the National Research Foundation of Korea(NRF) grant funded by the Korean Government(MSIP) (No. 2015R1A2A1A10055991). Y.Z. and K.C. acknowledge the Global Frontier R&D Program on Center for Multiscale Energy System (NRF-2011-0031571).

Author information

Authors and Affiliations

Authors

Contributions

H.-D.L. and Y.Z. designed the experiments with help from J.H., J.K., H.G., Y.K., M.L. and K.C. The computations were performed by B.L. The original idea was conceived by K.K., who supervised all the experiments and calculations. All the authors discussed the results and contributed to preparing the manuscript.

Corresponding authors

Correspondence to Kyeongjae Cho or Kisuk Kang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–18, Supplementary Tables 1–2, Supplementary Notes 1–9, Supplementary References. (PDF 2205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, HD., Lee, B., Zheng, Y. et al. Rational design of redox mediators for advanced Li–O2 batteries. Nat Energy 1, 16066 (2016). https://doi.org/10.1038/nenergy.2016.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.66

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing