Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering


A detailed understanding of confinement and desolvation of ions in electrically charged carbon nanopores is the key to enable advanced electrochemical energy storage and water treatment technologies. Here, we present the synergistic combination of experimental data from in situ small-angle X-ray scattering with Monte Carlo simulations of length-scale-dependent ion arrangement. In our approach, the simulations are based on the actual carbon nanopore structure and the global ion concentrations in the electrodes, both obtained from experiments. A combination of measured and simulated scattering data provides compelling evidence of partial desolvation of Cs+ and Cl ions in water even in mixed micro–mesoporous carbons with average pore size well above 1 nm. A tight attachment of the aqueous solvation shell effectively prevents complete desolvation in carbons with subnanometre average pore size. The tendency of counter-ions to change their local environment towards high confinement with increasing voltage determines conclusively the performance of supercapacitor electrodes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Combined X-ray scattering and modelling approach.
Figure 2: The degree of confinement and desolvation.
Figure 3: Quantifying the local rearrangement of ions as a function of charge.
Figure 4: Impact of local environment on the capacitive performance of carbon electrodes.


  1. 1

    Raviv, U., Laurat, P. & Klein, J. Fluidity of water confined to subnanometre films. Nature 413, 51–54 (2001).

    Article  Google Scholar 

  2. 2

    Ting, V. P. et al. Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperatures. ACS Nano 9, 8249–8254 (2015).

    Article  Google Scholar 

  3. 3

    Chathoth, S. M. et al. Fast diffusion in a room temperature ionic liquid confined in mesoporous carbon. Europhys. Lett. 97, 66004 (2012).

    Article  Google Scholar 

  4. 4

    Wang, X. et al. Geometrically confined favourable ion packing for high gravimetric capacitance in carbon-ionic liquid supercapacitors. Energy Environ. Sci. 9, 232–239 (2016).

    Google Scholar 

  5. 5

    Béguin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    Article  Google Scholar 

  6. 6

    Porada, S. et al. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).

    Article  Google Scholar 

  7. 7

    Hamelers, H. V. M. et al. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett. 1, 31–35 (2014).

    Article  Google Scholar 

  8. 8

    Härtel, A. et al. Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors. Energy Environ. Sci. 8, 2396–2401 (2015).

    Article  Google Scholar 

  9. 9

    Torop, J. et al. Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 49, 3113–3119 (2011).

    Article  Google Scholar 

  10. 10

    Baughman, R. H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

    Article  Google Scholar 

  11. 11

    Chun, S.-E. et al. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818 (2015).

    Article  Google Scholar 

  12. 12

    Fic, K., Lota, G., Meller, M. & Frackowiak, E. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012).

    Article  Google Scholar 

  13. 13

    Müllier, M. & Kastening, B. The double layer of activated carbon electrodes: Part 1. The contribution of ions in the pores. J. Electroanal. Chem. 374, 149–158 (1994).

    Article  Google Scholar 

  14. 14

    Kastening, B. & Spinzig, S. Electrochemical polarization of activated carbon and graphite powder suspensions: Part II. Exchange of ions between electrolyte and pores. J. Electroanal. Chem. Interfacial Electrochem. 214, 295–302 (1986).

    Article  Google Scholar 

  15. 15

    Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

    Article  Google Scholar 

  16. 16

    Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    Article  Google Scholar 

  17. 17

    Kastening, B., Hahn, M. & Kremeskötter, J. The double layer of activated carbon electrodes part 2. Charge carriers in the solid material. J. Electroanal. Chem. 374, 159–166 (1994).

    Article  Google Scholar 

  18. 18

    Biesheuvel, P. M., Porada, S., Levi, M. & Bazant, M. Z. Attractive forces in microporous carbon electrodes for capacitive deionization. J. Solid State Electr. 18, 1365–1376 (2014).

    Article  Google Scholar 

  19. 19

    Hantel, M. M., Weingarth, D. & Kötz, R. Parameters determining dimensional changes of porous carbons during capacitive charging. Carbon 69, 275–286 (2014).

    Article  Google Scholar 

  20. 20

    Rochester, C. C., Pruessner, G. & Kornyshev, A. A. Statistical mechanics of ‘unwanted electroactuation’ in nanoporous supercapacitors. Electrochim. Acta 174, 978–984 (2015).

    Article  Google Scholar 

  21. 21

    Rose, M. et al. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7, 1108–1117 (2011).

    Article  Google Scholar 

  22. 22

    Jäckel, N. et al. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. J. Power Sources 326, 660–671 (2016).

    Article  Google Scholar 

  23. 23

    Jäckel, N., Simon, P., Gogotsi, Y. & Presser, V. Increase in capacitance by subnanometer pores in carbon. ACS Energy Lett. 1, 1262–1265 (2016).

    Article  Google Scholar 

  24. 24

    Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

    Article  Google Scholar 

  25. 25

    Bonthuis, D. J. & Netz, R. R. Beyond the continuum: How molecular solvent structure affects electrostatics and hydrodynamics at solid–electrolyte interfaces. J. Phys. Chem. B 117, 11397–11413 (2013).

    Article  Google Scholar 

  26. 26

    Kondrat, S., Georgi, N., Fedorov, M. V. & Kornyshev, A. A. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Phys. Chem. Chem. Phys. 13, 11359–11366 (2011).

    Article  Google Scholar 

  27. 27

    Merlet, C. et al. Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 4, 2701 (2013).

    Article  Google Scholar 

  28. 28

    Palmer, J. C. et al. Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48, 1116–1123 (2010).

    Article  Google Scholar 

  29. 29

    Levi, M. D. et al. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 8, 872–875 (2009).

    Article  Google Scholar 

  30. 30

    Deschamps, M. et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12, 351–358 (2013).

    Article  Google Scholar 

  31. 31

    Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).

    Article  Google Scholar 

  32. 32

    Shpigel, N. et al. In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes. Nat. Mater. 15, 570–575 (2016).

    Article  Google Scholar 

  33. 33

    Richey, F. W., Dyatkin, B., Gogotsi, Y. & Elabd, Y. A. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135, 12818–12826 (2013).

    Article  Google Scholar 

  34. 34

    Prehal, C. et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy Environ. Sci. 8, 1725–1735 (2015).

    Article  Google Scholar 

  35. 35

    Boukhalfa, S., He, L., Melnichenko, Y. B. & Yushin, G. Small-angle neutron scattering for in situ probing of ion adsorption inside micropores. Angew. Chem. Int. Ed. 52, 4618–4622 (2013).

    Article  Google Scholar 

  36. 36

    Wu, P. et al. Voltage dependent charge storage modes and capacity in subnanometer pores. J. Phys. Chem. Lett. 3, 1732–1737 (2012).

    Article  Google Scholar 

  37. 37

    Berk, N. Scattering properties of a model bicontinuous structure with a well defined length scale. Phys. Rev. Lett. 58, 2718–2721 (1987).

    Article  Google Scholar 

  38. 38

    Gommes, C. J. & Roberts, A. P. Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. Phys. Rev. E 77, 041409 (2008).

    Article  Google Scholar 

  39. 39

    Kondrat, S., Kornyshev, A. A., Stoeckli, F. & Centeno, T. A. The effect of dielectric permittivity on the capacitance of nanoporous electrodes. Electrochem. Commun. 34, 348–350 (2013).

    Article  Google Scholar 

  40. 40

    Rochester, C. C., Lee, A. A., Pruessner, G. & Kornyshev, A. A. Interionic interactions in conducting nanoconfinement. ChemPhysChem 14, 4121–4125 (2013).

    Article  Google Scholar 

  41. 41

    Lee, A. A., Vella, D. & Goriely, A. Quantum capacitance modifies interionic interactions in semiconducting nanopores. Europhys. Lett. 113, 38005 (2016).

    Article  Google Scholar 

  42. 42

    Weingarth, D. et al. Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv. Energy Mater. 4, 1400316 (2014).

    Article  Google Scholar 

  43. 43

    Kondrat, S. et al. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Sci. 5, 6474–6479 (2012).

    Article  Google Scholar 

  44. 44

    Lu, M., Beguin, F. & Frackowiak, E. Supercapacitors: Materials, Systems and Applications (John Wiley, 2013).

    Google Scholar 

  45. 45

    Ohtaki, H. & Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993).

    Article  Google Scholar 

  46. 46

    Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article  Google Scholar 

  47. 47

    Amenitsch, H. et al. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J. Synchrotron Radiat. 5, 506–508 (1998).

    Article  Google Scholar 

  48. 48

    Ruch, P. W. et al. A dilatometric and small-angle x-ray scattering study of the electrochemical activation of mesophase pitch-derived carbon in non-aqueous electrolyte solution. Carbon 48, 1880–1888 (2010).

    Article  Google Scholar 

  49. 49

    Glatter, O. & Kratky, O. Small Angle X-ray Scattering (Academic Press, 1982).

    Google Scholar 

  50. 50

    Marcus, Y. Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988).

    Article  Google Scholar 

  51. 51

    Senapati, S. & Chandra, A. Dielectric constant of water confined in a nanocavity. J. Phys. Chem. B 105, 5106–5109 (2001).

    Article  Google Scholar 

  52. 52

    Merlet, C. et al. Simulating supercapacitors: can we model electrodes as constant charge surfaces? J. Phys. Chem. Lett. 4, 264–268 (2013).

    Article  Google Scholar 

  53. 53

    Tyagi, S. et al. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. J. Chem. Phys. 132, 154112 (2010).

    Article  Google Scholar 

  54. 54

    Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford Univ. Press, 1989).

    MATH  Google Scholar 

  55. 55

    Landau, D. P. & Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge Univ. Press, 2014).

    Book  Google Scholar 

  56. 56

    Kondrat, S. & Kornyshev, A. A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2011).

    Google Scholar 

  57. 57

    Goduljan, A. et al. Screening of ions in carbon and gold nanotubes—a theoretical study. Electrochem. Commun. 45, 48–51 (2014).

    Article  Google Scholar 

  58. 58

    Mohammadzadeh, L. et al. Nanotubes for charge storage—towards an atomistic model. Electrochim. Acta 162, 11–16 (2015).

    Article  Google Scholar 

  59. 59

    Levrel, L. & Maggs, A. Boundary conditions in local electrostatics algorithms. J. Chem. Phys. 128, 214103 (2008).

    Article  Google Scholar 

  60. 60

    Hua, W., Sprung, D. W. L. & Martorell, J. Potential energy of a point charge in a grounded conducting cavity. Eur. J. Phys. 21, 413–419 (2000).

    Article  Google Scholar 

Download references


O.P., C.P. and C.K. acknowledge financial support from the Austrian Klima- und Energiefonds via the FFG programme ‘Energieforschung’ (Project: Hybrid Supercap). We are grateful to G. Fritz-Popovski and R. Meisels (both MU Leoben) for helpful discussions on GRFs and on electrostatics, and to all colleagues at the Institute of Physics (MU Leoben) who provided CPU power. The access to the EVA HPC Cluster (K. Flicker, ZID, MU Leoben, and T. Antretter, Institute of Mechanics, MU Leoben) for providing extensive computational time is also gratefully acknowledged. All authors acknowledge the synchrotron radiation source ELETTRA (Trieste, Italy) for providing beam time. The authors thank D. Weingarth and S. Fleischmann (both INM) for discussions. V.P., A.S. and N.J. thank E. Arzt (INM) for his continuing support.

Author information




C.P., C.K., M.B. and H.A. carried out the in situ scattering experiments. N.J. and A.S. supported the electrochemical measurements. C.P., C.K. and M.A.H. developed the simulation toolkit. V.P. and O.P. conceptualized the work. All authors contributed to data analysis and C.P., V.P. and O.P. wrote the paper.

Corresponding authors

Correspondence to V. Presser or O. Paris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Discussion, Supplementary References. (PDF 1203 kb)

Supplementary Videos

3D plot of the ion-populated structure of activated carbon (AC1). (WMV 22153 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prehal, C., Koczwara, C., Jäckel, N. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat Energy 2, 16215 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing