Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour

This article has been updated

Abstract

Efficiencies of organic–inorganic lead halide perovskite solar cells (PSCs) have significantly increased in recent years, but instability issues impede their further development and application. Previous studies reported that volatile species (for example, iodine, I2) were generated when perovskites were subjected to moisture, oxygen, light illumination, applied electric field, and thermal stress (all of which are relevant to the operation of PSCs in practical applications). Here we show that I2 vapour causes severe degradation of MAPbI3 (MA: CH3NH3+) perovskite, due to chemical chain reactions. Furthermore, I2 vapour could also induce degradation of other iodide-based perovskites, such as FAPbI3 (FA: HC(NH2)2+) and FA0.8Cs0.2PbI3. The results reveal a universal degradation factor for iodide-based perovskite by I2. As the release of I2 is nearly inevitable during practical applications, this work suggests that MAPbI3 may not be suitable for long-term stable solar cells and it is imperative to develop other types of perovskite material to achieve stable PSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-generation of I2 in PSCs.
Figure 2: XRD results of perovskite films following I2-vapour exposure or I2 additive.
Figure 3: HRXPS results of MAPbI3 film treated with I2 or CH3NH2.
Figure 4: Schemes of I2-induced degradation processes for MAPbI3 perovskite.
Figure 5: Evidence of regeneration of I2 in the perovskite during degradation and its accelerating effect on degradation.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  Google Scholar 

  2. Son, D.-Y. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016).

    Article  Google Scholar 

  3. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  Google Scholar 

  4. Ono, L. K., Wang, S., Kato, Y., Raga, S. R. & Qi, Y. B. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 7, 3989–3993 (2014).

    Article  Google Scholar 

  5. Best Research-Cell Efficiencies (National Renewable Energy Laboratory, 08-12-2016); http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg

  6. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  Google Scholar 

  7. Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    Article  Google Scholar 

  8. Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).

    Article  Google Scholar 

  9. Aristidou, N. et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208–8212 (2015).

    Article  Google Scholar 

  10. Ito, S., Tanaka, S., Manabe, K. & Nishino, H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 118, 16995–17000 (2014).

    Article  Google Scholar 

  11. Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).

    Article  Google Scholar 

  12. Liu, F. et al. Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6, 1502206 (2016).

    Google Scholar 

  13. Schoonman, J. Organic–inorganic lead halide perovskite solar cell materials: a possible stability problem. Chem. Phys. Lett. 619, 193–195 (2015).

    Article  Google Scholar 

  14. Friedenberg, A. & Shapira, Y. Photolysis and conductivity measurements at PbI2 surfaces. Surf. Sci. 115, 606–622 (1982).

    Article  Google Scholar 

  15. Frolova, L. A., Dremova, N. N. & Troshin, P. A. The chemical origin of the p-type and n-type doping effects in the hybrid methylammonium-lead iodide (MAPbI3) perovskite solar cells. Chem. Commun. 51, 14917–14920 (2015).

    Article  Google Scholar 

  16. Yuan, Y. et al. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures. Adv. Energy Mater. 6, 1501803 (2016).

    Article  Google Scholar 

  17. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  18. Tripathi, N. et al. Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method. J. Mater. Chem. A 3, 12081–12088 (2015).

    Article  Google Scholar 

  19. Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015).

    Article  Google Scholar 

  20. Baxter, G. P., Hickey, C. H. & Holmes, W. C. The vapor pressure of iodine. J. Am. Chem. Soc. 29, 127–136 (1907).

    Article  Google Scholar 

  21. Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  22. Yi, C. et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    Article  Google Scholar 

  23. Conings, B. et al. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014).

    Article  Google Scholar 

  24. Wagner, C. D., Riggs, W. M., Davies, L. E., Moulder, J. F. & Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1979).

    Google Scholar 

  25. Lindblad, R. et al. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5, 648–653 (2014).

    Article  Google Scholar 

  26. He, Y. et al. Improved growth of PbI2 single crystals. J. Cryst. Growth 300, 448–451 (2007).

    Article  Google Scholar 

  27. Ng, T.-W., Chan, C.-Y., Lo, M.-F., Guan, Z. Q. & Lee, C.-S. Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. J. Mater. Chem. A 3, 9081–9085 (2015).

    Article  Google Scholar 

  28. Jung, M.-C. et al. The presence of CH3NH2 neutral species in organometal halide perovskite films. Appl. Phys. Lett. 108, 073901 (2016).

    Article  Google Scholar 

  29. Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    Article  Google Scholar 

  30. Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015).

    Article  Google Scholar 

  31. Liu, L., McLeod, J. A., Wang, R., Shen, P. & Duhm, S. Tracking the formation of methylammonium lead triiodide perovskite. Appl. Phys. Lett. 107, 061904 (2015).

    Article  Google Scholar 

  32. Juarez-Perez, E. J., Hawash, Z., Raga, S. R., Ono, L. K. & Qi, Y. B. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 9, 3406–3410 (2016).

    Article  Google Scholar 

  33. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

    Article  Google Scholar 

  34. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  Google Scholar 

  35. Dualeh, A. et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014).

    Article  Google Scholar 

  36. Leguy, A. M. A. et al. The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015).

    Article  Google Scholar 

  37. Wan, L. & Xu, Y. Iodine-sensitized oxidation of ferrous ions under UV and visible light: the influencing factors and reaction mechanism. Photochem. Photobiol. Sci. 12, 2084–2088 (2013).

    Article  Google Scholar 

  38. Boschloo, G. & Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819–1826 (2009).

    Article  Google Scholar 

  39. Crawford, E., McIndoe, J. S. & Tuck, D. G. The energetics of the X2+ X → X3 equilibrium (X = Cl, Br, I) in aqueous and nonaqueous solution. Can. J. Chem. 84, 1607–1613 (2006).

    Article  Google Scholar 

  40. Gottesman, R. et al. Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662–2669 (2014).

    Article  Google Scholar 

  41. Mosconi, E. & De Angelis, F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS Energy Lett. 1, 182–188 (2016).

    Article  Google Scholar 

  42. Custer, J. J. & Natelson, S. Spectrophotometric determination of microquantities of iodine. Anal. Chem. 21, 1005–1009 (1949).

    Article  Google Scholar 

  43. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Article  Google Scholar 

  44. Travis, W., Glover, E. N. K., Bronstein, H., Scanlon, D. O. & Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016).

    Article  Google Scholar 

  45. Nagabhushana, G. P., Shivaramaiah, R. & Navrotsky, A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc. Natl Acad. Sci. USA 113, 7717–7721 (2016).

    Article  Google Scholar 

  46. Castelli, I. E., García-Lastra, J. M., Thygesen, K. S. & Jacobsen, K. W. Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2, 081514 (2014).

    Article  Google Scholar 

  47. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    Article  Google Scholar 

  48. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  Google Scholar 

  49. Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016).

    Article  Google Scholar 

  50. McClure, E. T., Ball, M. R., Windl, W. & Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016).

    Article  Google Scholar 

  51. Wang, S. et al. Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. J. Mater. Chem. A 3, 14631–14641 (2015).

    Article  Google Scholar 

  52. Xiao, M. et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014).

    Article  Google Scholar 

  53. Zheng, J., Xu, X. & Truhlar, D. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 128, 295–305 (2011).

    Article  Google Scholar 

  54. Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).

    Article  Google Scholar 

  55. Peterson, K. A., Figgen, D., Goll, E., Stoll, H. & Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 119, 11113–11123 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University, the OIST R&D Cluster Research Program and JSPS KAKENHI Grant Number 15K17925. We thank S. D. Aird, the Technical Editor at Okinawa Institute of Science and Technology Graduate University (OIST), for valuable suggestions in revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.B.Q. conceived the idea, designed the experiments and supervised the project. S.W. prepared vacuum-processed MAPbI3 samples. Y.J. and S.W. prepared solution-processed perovskite films. S.W. performed most of the characterizations. Y.J. measured scanning electron microscopy images. E.J.J.-P. performed theoretical calculations. All authors discussed the results, wrote the manuscript and revised it.

Corresponding author

Correspondence to Yabing Qi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–26, Supplementary References. (PDF 2892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Jiang, Y., Juarez-Perez, E. et al. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat Energy 2, 16195 (2017). https://doi.org/10.1038/nenergy.2016.195

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing