Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strongly emissive perovskite nanocrystal inks for high-voltage solar cells

This article has been updated


Lead halide perovskite semiconductors have recently gained wide interest following their successful embodiment in solid-state photovoltaic devices with impressive power-conversion efficiencies, while offering a relatively simple and low-cost processability. Although the primary optoelectronic properties of these materials have already met the requirement for high-efficiency optoelectronic technologies, industrial scale-up requires more robust processing methods, as well as solvents that are less toxic than the ones that have been commonly used so successfully on the lab-scale. Here we report a fast, room-temperature synthesis of inks based on CsPbBr3 perovskite nanocrystals using short, low-boiling-point ligands and environmentally friendly solvents. Requiring no lengthy post-synthesis treatments, the inks are directly used to fabricate films of high optoelectronic quality, exhibiting photoluminescence quantum yields higher than 30% and an amplified spontaneous emission threshold as low as 1.5 μJ cm−2. Finally, we demonstrate the fabrication of perovskite nanocrystal-based solar cells, with open-circuit voltages as high as 1.5 V.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthesis method and structural characterization of the CsPbBr3 NCs passivated with short ligands.
Figure 2: Optical characterization of CsPbBr3 NC inks in solution and in films.
Figure 3: CsPbBr3 high-voltage solar cells.

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.


  1. 1

    Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  Google Scholar 

  2. 2

    Yang, J., Choi, M. K., Kim, D.-H. & Hyeon, T. Designed assembly and integration of colloidal nanocrystals for device applications. Adv. Mater. 28, 1176–1207 (2016).

    Article  Google Scholar 

  3. 3

    Kamat, P. V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).

    Article  Google Scholar 

  4. 4

    Goodwin, E. D. et al. Effects of post-synthesis processing on CdSe nanocrystals and their solids: correlation between surface chemistry and optoelectronic properties. J. Phys. Chem. C 118, 27097–27105 (2014).

    Article  Google Scholar 

  5. 5

    Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  Google Scholar 

  6. 6

    Donega, C. d. M. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011).

    Article  Google Scholar 

  7. 7

    Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  Google Scholar 

  8. 8

    Wang, R. et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 9, 1130–1143 (2016).

    Article  Google Scholar 

  9. 9

    McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005).

    Article  Google Scholar 

  10. 10

    Li, G. et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

    Article  Google Scholar 

  11. 11

    Yoon, W. et al. Enhanced open-circuit voltage of PbS nanocrystal quantum dot solar cells. Sci. Rep. 3, 2225 (2013).

    Article  Google Scholar 

  12. 12

    Oh, S. J. et al. Engineering charge injection and charge transport for high performance PbSe nanocrystal thin film devices and circuits. Nano Lett. 14, 6210–6216 (2014).

    Article  Google Scholar 

  13. 13

    Koleilat, G. I. et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2, 833–840 (2008).

    Article  Google Scholar 

  14. 14

    Lan, X. et al. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett. 16, 4630–4634 (2016).

    Article  Google Scholar 

  15. 15

    Zhang, H., Kurley, J. M., Russell, J. C., Jang, J. & Talapin, D. V. Solution-processed, ultrathin solar cells from CdCl3—capped CdTe nanocrystals: the multiple roles of CdCl3–ligands. J. Am. Chem. Soc. 138, 7464–7467 (2016).

    Article  Google Scholar 

  16. 16

    Saliba, M. et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 1, 15017 (2016).

    Article  Google Scholar 

  17. 17

    Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  Google Scholar 

  18. 18

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  Google Scholar 

  19. 19

    Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  Google Scholar 

  20. 20

    Ke, X., Yan, J., Zhang, A., Zhang, B. & Chen, Y. Optical band gap transition from direct to indirect induced by organic content of CH3NH3PbI3 perovskite films. Appl. Phys. Lett. 107, 091904 (2015).

    Article  Google Scholar 

  21. 21

    Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Article  Google Scholar 

  22. 22

    Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  Google Scholar 

  23. 23

    Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).

    Article  Google Scholar 

  24. 24

    Koh, T. M. et al. Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014).

    Article  Google Scholar 

  25. 25

    Zhang, W. et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015).

    Article  Google Scholar 

  26. 26

    He, H. et al. Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun. 7, 10896 (2016).

    Article  Google Scholar 

  27. 27

    Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  Google Scholar 

  28. 28

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  Google Scholar 

  29. 29

    Yantara, N. et al. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 6, 4360–4364 (2015).

    Article  Google Scholar 

  30. 30

    Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    Article  Google Scholar 

  31. 31

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, Xx = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  Google Scholar 

  32. 32

    Tyagi, P., Arveson, S. M. & Tisdale, W. A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6, 1911–1916 (2015).

    Article  Google Scholar 

  33. 33

    Sichert, J. A. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15, 6521–6527 (2015).

    Article  Google Scholar 

  34. 34

    Hu, F. et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 9, 12410–12416 (2015).

    Article  Google Scholar 

  35. 35

    Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

    Article  Google Scholar 

  36. 36

    Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    Article  Google Scholar 

  37. 37

    Sun, S., Yuan, D., Xu, Y., Wang, A. & Deng, Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016).

    Article  Google Scholar 

  38. 38

    Bai, S., Yuan, Z. & Gao, F. Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. J. Mater. Chem. C 4, 3898–3904 (2016).

    Article  Google Scholar 

  39. 39

    De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Article  Google Scholar 

  40. 40

    Swarnkar, A. et al. Quantum dot–induced phase stabilization of 𝛼-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  Google Scholar 

  41. 41

    Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Article  Google Scholar 

  42. 42

    Sebastian, M. et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3 . Phys. Rev. B 92, 235210 (2015).

    Article  Google Scholar 

  43. 43

    Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

    Article  Google Scholar 

  44. 44

    Zorn, G., Dave, S. R., Gao, X. & Castner, D. G. Method for determining the elemental composition and distribution in semiconductor core-shell quantum dots. Anal. Chem. 83, 866–873 (2011).

    Article  Google Scholar 

  45. 45

    Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    Article  Google Scholar 

  46. 46

    Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  Google Scholar 

  47. 47

    D’ Innocenzo, V., Srimath Kandada, A. R., De Bastiani, M., Gandini, M. & Petrozza, A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014).

    Article  Google Scholar 

  48. 48

    Arora, N. et al. Photovoltaic and amplified spontaneous emission studies of high-quality formamidinium lead bromide perovskite films. Adv. Funct. Mater. 26, 2846–2854 (2016).

    Article  Google Scholar 

  49. 49

    Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    Article  Google Scholar 

  50. 50

    Xu, Y. et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 138, 3761–3768 (2016).

    Article  Google Scholar 

  51. 51

    Vybornyi, O., Yakunin, S. & Kovalenko, M. V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale 8, 6278–6283 (2016).

    Article  Google Scholar 

  52. 52

    Park, Y.-S., Bae, W. K., Baker, T., Lim, J. & Klimov, V. I. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces. Nano Lett. 15, 7319–7328 (2015).

    Article  Google Scholar 

  53. 53

    Gollner, C. et al. Random lasing with systematic threshold behavior in films of CdSe/CdS core/thick-shell colloidal quantum dots. ACS Nano 9, 9792–9801 (2015).

    Article  Google Scholar 

  54. 54

    Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotech. 9, 891–895 (2014).

    Article  Google Scholar 

  55. 55

    Moreels, I. et al. Nearly temperature-independent threshold for amplified spontaneous emission in colloidal CdSe/CdS quantum dot-in-rods. Adv. Mater. 24, OP231–OP235 (2012).

    Article  Google Scholar 

  56. 56

    Di Stasio, F. et al. Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods. Small 11, 1328–1334 (2015).

    Article  Google Scholar 

  57. 57

    Edri, E., Kirmayer, S., Kulbak, M., Hodes, G. & Cahen, D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5, 429–433 (2014).

    Article  Google Scholar 

  58. 58

    Giesbrecht, N. et al. Synthesis of perfectly oriented and micrometer-sized MAPbBr3 perovskite crystals for thin-film photovoltaic applications. ACS Energy Lett. 1, 150–154 (2016).

    Article  Google Scholar 

  59. 59

    Arora, N. et al. High open-circuit voltage: fabrication of formamidinium lead bromide perovskite solar cells using fluorene–dithiophene derivatives as hole-transporting materials. ACS Energy Lett. 1, 107–112 (2016).

    Article  Google Scholar 

  60. 60

    Kulbak, M. et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167–172 (2016).

    Article  Google Scholar 

  61. 61

    Sutton, R. J. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6, 1502458 (2016).

    Article  Google Scholar 

  62. 62

    Gao, P., Gratzel, M. & Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014).

    Article  Google Scholar 

  63. 63

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  Google Scholar 

  64. 64

    Kulbak, M., Cahen, D. & Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015).

    Article  Google Scholar 

  65. 65

    Ryu, S. et al. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7, 2614–2618 (2014).

    Article  Google Scholar 

  66. 66

    Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013).

    Article  Google Scholar 

  67. 67

    Helander, M. G., Greiner, M. T., Wang, Z. B. & Lu, Z. H. Pitfalls in measuring work function using photoelectron spectroscopy. Appl. Surf. Sci. 256, 2602–2605 (2010).

    Article  Google Scholar 

  68. 68

    Calloni, A. et al. Stability of organic cations in solution-processed CH3NH3PbI3 perovskites: formation of modified surface layers. J. Phys. Chem. C 119, 21329–21335 (2015).

    Article  Google Scholar 

  69. 69

    Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

    Article  Google Scholar 

  70. 70

    de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  Google Scholar 

Download references


The research leading to these results has received funding from the European Union 7th Framework Programme under Grant Agreement No. 614897 (ERC Consolidator Grant ‘TRANS-NANO’) from the Cariplo Foundation through grant agreement no. 2013-0656 (‘Green nanomaterials for next-generation photovoltaics, GREENS)’.

Author information




Q.A.A., L.M., M.P. and A.P. conceived the experiments. Q.A.A. developed the synthesis of the nanocrystals inks, M.G. and J.M.B. fabricated and tested the solar cells, F.D.S. and P.R. studied the optical properties of the films and F.D.S. performed the ASE measurements, P.R. performed the cross-section, F.P. performed the XPS measurements, G.B. performed the HRTEM measurements and M.P. performed the UPS measurements. Q.A.A., M.G., J.M.B, A.P. and L.M. wrote the manuscript, with contributions from all authors.

Corresponding authors

Correspondence to Annamaria Petrozza or Liberato Manna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–16, Supplementary Tables 12 and Supplementary References. (PDF 4403 kb)

Supplementary Video 1

Video of CsPbBr3 nanocrystal synthesis. (MP4 3877 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akkerman, Q., Gandini, M., Di Stasio, F. et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat Energy 2, 16194 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing