High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration


The ability to grow perovskite solar cells in substrate configuration, where light enters the devices from the film side, allows the use of non-transparent flexible polymer and metal substrates. Furthermore, this configuration could facilitate processing directly on Cu(In,Ga)Se2 solar cells to realize ultrahigh-efficiency polycrystalline all-thin-film tandem devices. However, the inversion of conventional superstrate architecture imposes severe constraints on device processing and limits the electronic quality of the absorber and charge selective contacts. Here we report a device architecture that allows inverted semi-transparent planar perovskite solar cells with a high open-circuit voltage of 1.116 V and substantially improved efficiency of 16.1%. The substrate configuration perovskite devices show a temperature coefficient of −0.18% °C−1 and promising thermal and photo-stability. Importantly, the device exhibits a high average transmittance of 80.4% between 800 and 1,200 nm, which allows us to demonstrate polycrystalline all-thin-film tandem devices with efficiencies of 22.1% and 20.9% for Cu(In,Ga)Se2 and CuInSe2 bottom cells, respectively.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Perovskite solar cell configurations.
Figure 2: Inverted semi-transparent planar perovskite solar cells in substrate configuration.
Figure 3: Photovoltaic performance characterizations.
Figure 4: Light-soaking effect.
Figure 5: Thermal and photo-stability.
Figure 6: Polycrystalline all-thin-film perovskite–CIGS four-terminal tandem solar cell.

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.


  1. 1

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2016).

    Article  Google Scholar 

  2. 2

    Kim, Y. C. et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6, 1502104 (2016).

    Article  Google Scholar 

  3. 3

    Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  Google Scholar 

  4. 4

    Saliba, M. et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 1, 15017 (2016).

    Article  Google Scholar 

  5. 5

    Bi, D. Q. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

  6. 6

    Son, D. Y. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016).

    Article  Google Scholar 

  7. 7

    Wang, Q. et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    Article  Google Scholar 

  8. 8

    McEvoy, A., Markvart, T. & Castaner, L. Practical Handbook of Photovoltaics: Fundamentals and Applications 2nd edn (Academic, 2011).

    Google Scholar 

  9. 9

    Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article  Google Scholar 

  10. 10

    Chirila, A. et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10, 857–861 (2011).

    Article  Google Scholar 

  11. 11

    Pianezzi, F. et al. Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier. Prog. Photovolt. Res. Appl. 20, 253–259 (2012).

    Article  Google Scholar 

  12. 12

    Kranz, L. et al. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nat. Commun. 4, 2306 (2013).

    Article  Google Scholar 

  13. 13

    Chirila, A. et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12, 1107–1111 (2013).

    Article  Google Scholar 

  14. 14

    Roldan-Carmona, C. et al. Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7, 994–997 (2014).

    Article  Google Scholar 

  15. 15

    Werner, J. et al. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem solar cells. ACS Energy Lett. 1, 474–480 (2016).

    Article  Google Scholar 

  16. 16

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  Google Scholar 

  17. 17

    Albrecht, S. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2015).

    Article  Google Scholar 

  18. 18

    Bailie, C. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2015).

    Article  Google Scholar 

  19. 19

    Troughton, J. et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J. Mater. Chem. A. 3, 9141–9145 (2015).

    Article  Google Scholar 

  20. 20

    Werner, J. et al. Efficient monolithic perovskite/silicon tandem solar cells with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016).

    Article  Google Scholar 

  21. 21

    Kranz, L. et al. High-efficiency polycrystalline thin film tandem solar cells. J. Phys. Chem. Lett. 6, 2676–2681 (2015).

    Article  Google Scholar 

  22. 22

    Fu, F. et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 6, 8932 (2015).

    Article  Google Scholar 

  23. 23

    Liu, P. et al. Interfacial electronic structure at the CH3NH3PbI3/MoO3 interface. Appl. Phys. Lett. 106, 193903 (2015).

    Article  Google Scholar 

  24. 24

    Bush, K. et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    Article  Google Scholar 

  25. 25

    Bo, C. et al. Efficient semitransparent perovskite solar cells for 23.0% efficiency perovskite/silicon four-terminal tandem cells. Adv. Energy Mater. 6, 1601128 (2016).

    Article  Google Scholar 

  26. 26

    Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ASC Nano 10, 6306–6314 (2016).

    Article  Google Scholar 

  27. 27

    Fu, F. Controlled growth of PbI2 nanoplates for rapid preparation of CH3NH3PbI3 in planar perovskite solar cells. Phys. Status Solidi A 212, 2708–2717 (2015).

    Article  Google Scholar 

  28. 28

    Yu, Z. & Sun, L. Recent progress on hole-transporting materials for emerging organometal halide perovskite solar cells. Adv. Energy Mater. 5, 1500213 (2015).

    Article  Google Scholar 

  29. 29

    Bailie, C. Melt-infitration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 16, 4864–4870 (2014).

    Article  Google Scholar 

  30. 30

    Chiang, C. H. et al. Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat. Photon. 10, 196–200 (2016).

    Article  Google Scholar 

  31. 31

    Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  Google Scholar 

  32. 32

    Hou, Y. et al. Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Adv. Mater. 28, 5112–5120 (2016).

    Article  Google Scholar 

  33. 33

    Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015).

    Article  Google Scholar 

  34. 34

    Wang, Q., Bi, C. & Huang, J. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 15, 275–280 (2015).

    Article  Google Scholar 

  35. 35

    Sites, J. R. & Mauk, P. H. Diode quality factor determination for thin-film solar cells. Solar Cells 27, 411–417 (1989).

    Article  Google Scholar 

  36. 36

    Hegedus, S. S. & Shafarman, W. N. Thin-film solar cells: device measurements and analysis. Prog. Photovolt. 12, 155–176 (2004).

    Article  Google Scholar 

  37. 37

    Lilliedal, M. R. et al. The effect of post-processing treatments on inflection points in current-voltage curves of roll-to-roll processed polymer photovoltaics. Solar Energy Mater. Solar Cells 94, 2018–2031 (2010).

    Article  Google Scholar 

  38. 38

    Gurwitz, R. et al. Interaction of light with the ZnO surface: photon induced oxygen “breathing”, oxygen vacancies, persistent photoconductivity, and persistant photovoltage. J. Appl. Lett. 115, 033701 (2014).

    Article  Google Scholar 

  39. 39

    Chen, S. et al. Inverted polymer solar cells with reduced interface recombination. Adv. Energy Mater. 2, 1333–1337 (2012).

    Article  Google Scholar 

  40. 40

    Deng, Y. et al. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Adv. Energy Mater. 6, 1600372 (2016).

    Article  Google Scholar 

  41. 41

    Back, H. et al. Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ. Sci. 9, 1258–1263 (2016).

    Article  Google Scholar 

  42. 42

    You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotech. 11, 75–81 (2016).

    Article  Google Scholar 

  43. 43

    Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2015).

    Article  Google Scholar 

  44. 44

    Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015).

    Article  Google Scholar 

  45. 45

    Li, X. et al. Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoscopic perovskite photovoltaics. Energy Technol. 3, 551–555 (2015).

    Article  Google Scholar 

  46. 46

    Lee, J. W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  47. 47

    Bryant, D. et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655–1660 (2016).

    Article  Google Scholar 

  48. 48

    Abate, A. et al. Silothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells. Energy Environ. Sci. 8, 2946–2953 (2015).

    Article  Google Scholar 

  49. 49

    Kulbak, M. et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 7, 167–172 (2016).

    Article  Google Scholar 

  50. 50

    First Solar Series 4TM PV Module (First Solar, 2016); http://www.firstsolar.com/-/media/Documents/Module-Support/Series-4V3-Datasheet.ashx

  51. 51

    Solibro SL2 CIGS Thin-Film Module: Generation 2.2 (Solibro GmbH, accessed 29 November 2016); http://solibro-solar.com/fileadmin/image/05_News_Downloads/Downloads/Data_sheets/G2.2/Solibro_datasheet_SL2_G2-2_2016-07_Rev01_EN.pdf

  52. 52

    The Utility Module TSM-PD14 (Trina Solar, 2015); http://www.trinasolar.com/HtmlData/downloads/us/US_Datasheet_PD14.pdf

  53. 53

    Niemegeers, A. et al. On the CdS/CuInSe2 conduction band discontinuity. Appl. Phys. Lett. 67, 843–845 (1995).

    Article  Google Scholar 

  54. 54

    Scheer, R. & Schock, H. W. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices (Wiley, 2011).

    Google Scholar 

Download references


Financial funding from Swiss National Science Foundation (SNF)-NRP70, PV2050 (project NO.: 407040_153976 and 407040_153916), SNF-NanoTera and Swiss Federal Office of Energy (SYNERGY: 20NA21_150950), as well as Competence Center for Energy and Mobility are gratefully acknowledged. F.F. is grateful for financial support from the Chinese Scholarship Council (CSC).

Author information




F.F., S.B. and A.N.T. designed the research and experiments. F.F., T.F. and E.A. fabricated the perovskite solar cells and CIGS solar cells. F.F., T.F., T.P.W., S.P., E.A., C.A., S.B. and A.N.T. performed the characterization and analysis. F.F., S.B. and A.N.T. wrote the paper. All authors contributed to discussions.

Corresponding authors

Correspondence to Fan Fu or Stephan Buecheler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 and Supplementary Table 1. (PDF 1383 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, F., Feurer, T., Weiss, T. et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat Energy 2, 16190 (2017). https://doi.org/10.1038/nenergy.2016.190

Download citation

Further reading