Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution

Abstract

The design and synthesis of efficient electrocatalysts are important for electrochemical conversion technologies. The oxygen evolution reaction (OER) is a key process in such conversions, having applications in water splitting and metal–air batteries. Here, we report ultrathin metal–organic frameworks (MOFs) as promising electrocatalysts for the OER in alkaline conditions. Our as-prepared ultrathin NiCo bimetal–organic framework nanosheets on glassy-carbon electrodes require an overpotential of 250 mV to achieve a current density of 10 mA cm−2. When the MOF nanosheets are loaded on copper foam, this decreases to 189 mV. We propose that the surface atoms in the ultrathin MOF sheets are coordinatively unsaturated—that is, they have open sites for adsorption—as evidenced by a suite of measurements, including X-ray spectroscopy and density-functional theory calculations. The findings suggest that the coordinatively unsaturated metal atoms are the dominating active centres and the coupling effect between Ni and Co metals is crucial for tuning the electrocatalytic activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Physical characterization of NiCo-UMOFNs.
Figure 2: Structural characterization of NiCo-UMOFNs.
Figure 3: OER electrochemical activity of NiCo-UMOFNs.
Figure 4: Ex situ XAS characterization of local coordination of Ni/Co atoms in NiCo-UMOFNs.
Figure 5: In situ XAS characterization of NiCo-UMOFNs.
Figure 6: DFT calculation for the OER on UMOFNs.

References

  1. 1

    Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  Google Scholar 

  2. 2

    Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).

    Article  Google Scholar 

  3. 3

    Symes, M. D. & Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 14, 404–409 (2013).

    Google Scholar 

  4. 4

    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  Google Scholar 

  5. 5

    Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  Google Scholar 

  6. 6

    Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  Google Scholar 

  7. 7

    Sheehan, S. W. et al. A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nat. Commun. 6, 6469 (2015).

    Article  Google Scholar 

  8. 8

    Mills, A. Heterogeneous redox catalysts for oxygen and chlorine evolution. Chem. Soc. Rev. 18, 285–316 (1989).

    Article  Google Scholar 

  9. 9

    Chen, G. X. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 344, 495–499 (2014).

    Article  Google Scholar 

  10. 10

    Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    Article  Google Scholar 

  11. 11

    Zhao, M. T. et al. Ultrathin 2D metal–organic framework nanosheets. Adv. Mater. 27, 7372–7378 (2015).

    Article  Google Scholar 

  12. 12

    Qin, J. S. et al. Ultrastable polymolybdate-based metal–organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 137, 7196–7177 (2015).

    Google Scholar 

  13. 13

    Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

    Article  Google Scholar 

  14. 14

    Kung, C.-W. et al. Metal–organic framework thin films as platforms for atomic layer deposition of cobalt ions to enable electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 7, 28223–28230 (2015).

    Article  Google Scholar 

  15. 15

    Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  Google Scholar 

  16. 16

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    Article  Google Scholar 

  17. 17

    Fang, Z. L., Bueken, B., Vos, D. E. D. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    Article  Google Scholar 

  18. 18

    Liu, Y. W. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136, 15670–15675 (2014).

    Article  Google Scholar 

  19. 19

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  Google Scholar 

  20. 20

    Song, F. & Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014).

    Article  Google Scholar 

  21. 21

    Mesbah, A. et al. From hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to anhydrous Ni2(OH)2(C8H4O4): impact of structural transformations on magnetic properties. Inorg. Chem. 53, 872–881 (2014).

    Article  Google Scholar 

  22. 22

    Zhuang, Z. B., Sheng, W. C. & Yan, Y. S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater. 26, 3950–3955 (2014).

    Article  Google Scholar 

  23. 23

    Ma, T. Y., Dai, S., Jaroniec, M. & Qiao, S. Z. Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 7281–7285 (2014).

    Article  Google Scholar 

  24. 24

    Miner, E. M. et al. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2 . Nat. Commun. 7, 10924 (2016).

    Article  Google Scholar 

  25. 25

    Louie, M. W. & Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013).

    Article  Google Scholar 

  26. 26

    Yano, J. et al. X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc. Natl Acad. Sci. USA 34, 12047–12052 (2005).

    Article  Google Scholar 

  27. 27

    Sarangi, R., Cho, J., Nam, W. & Solomon, E. I. XAS and DFT investigation of mononuclear cobalt (III) peroxo complexes: electronic control of the geometric structure in CoO2 versus NiO2 systems. Inorg. Chem. 50, 614–620 (2011).

    Article  Google Scholar 

  28. 28

    Trześniewski, B. J. et al. In situ observervation of active oxygen species in Fe-containing Ni based oxygen evolution catalysts: the effect of pH on electrochemical activity. J. Am. Chem. Soc. 137, 15112–15121 (2015).

    Article  Google Scholar 

  29. 29

    Gorlin, Y. et al. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 135, 8525–8534 (2013).

    Article  Google Scholar 

  30. 30

    Zhang, B. et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  Google Scholar 

  31. 31

    Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    Article  Google Scholar 

  32. 32

    Su, H. Y. et al. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys. Chem. Chem. Phys. 14, 14010–14022 (2012).

    Article  Google Scholar 

  33. 33

    Xiao, D. J. et al. Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron (II) sites. Nat. Chem. 6, 590–595 (2014).

    Article  Google Scholar 

  34. 34

    Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).

    Article  Google Scholar 

  35. 35

    Chen, J. Y. C. et al. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mössbauer spectroscopy. J. Am. Chem. Soc. 137, 15090–15093 (2015).

    Article  Google Scholar 

  36. 36

    Yang, Y., Fei, H. L., Ruan, G. D., Xiang, C. S. & Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel–cobalt binary oxide nanoporous layers. ACS Nano 8, 9518–9523 (2014).

    Article  Google Scholar 

  37. 37

    Lassalle-Kaiser, B. et al. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 137, 314–321 (2015).

    Article  Google Scholar 

  38. 38

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  Google Scholar 

  39. 39

    Koningsberger, D. C. & Prins, R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (eds Koningsberger, D. C. & Prins, R. ) Vol. 92 (Wiley, 1988).

    Google Scholar 

  40. 40

    Rehr, J. J. & Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    Article  Google Scholar 

  41. 41

    Joly, Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 63, 125120–125130 (2001).

    Article  Google Scholar 

  42. 42

    Bunău, O. & Joly, Y. Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Matter 21, 345501–345510 (2009).

    Article  Google Scholar 

  43. 43

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  44. 44

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  45. 45

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  46. 46

    Liao, P., Keith, J. A. & Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for photocatalysis. J. Am. Chem. Soc. 134, 13296–13309 (2012).

    Article  Google Scholar 

  47. 47

    Alidoust, N., Lessio, M. & Carter, E. A. Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: a theoretical study. J. Appl. Phys. 119, 025102 (2016).

    Article  Google Scholar 

  48. 48

    Gong, M. et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from National Research Fund for Fundamental Key Project (2014CB931801 and 2016YFA0200700, Z.T.), Instrument Developing Project of the Chinese Academy of Sciences, Grant No. YZ201311, CAS-CSIRO Cooperative Research Program, Grant No. GJHZ1503, “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA09040100), National Natural Science Foundation of China (91023007 and 20773033 (S.L.), 21025310 (Z.T.)), and the New Century Excellent Talents in University, Outstanding Young Funding of Heilongjiang Province, Jialin Xie Fundation of Institute of High Energy Physics, CAS (542016IHEPZZBS501 (J.D.)) and NSFC (Grant No. 11605225). We thank L. Gu for providing high-angle annular dark-field scanning transmission electron microscope tests. All DFT calculations were undertaken on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government.

Author information

Affiliations

Authors

Contributions

Z.T. proposed the research direction and guided the project. S.Z., Y.W., C.-T.H. and H.Y. designed and performed the experiments. Z.T., S.Z., Y.W., J.D., C.-T.H. and P.A. analysed and discussed the experimental results and drafted the manuscript. K.Z., X.Z., C.G., L.Z., J.L., J.W., Jianqi Z., A.M.K., N.A.K., Z.W., Jing Z., S.L. and H.Z. joined the discussion of data and gave useful suggestions. Y.W., J.D. and C.-T.H. contributed equally to this work.

Corresponding authors

Correspondence to Shaoqin Liu or Huijun Zhao or Zhiyong Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–41, Supplementary Tables 1–5. (PDF 4660 kb)

Supplementary Data 1

Crystallographic information for NiCo-UMOFNs. (CIF 6 kb)

Supplementary Data 2

Crystallographic information for Ni-UMOFNs. (CIF 6 kb)

Supplementary Data 3

Crystallographic information for Co-UMOFNs. (CIF 6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Wang, Y., Dong, J. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1, 16184 (2016). https://doi.org/10.1038/nenergy.2016.184

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing