Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators

Abstract

Luminescent solar concentrators (LSCs) are envisioned to reduce the cost of solar electricity by decreasing the usage of more expensive photovoltaic (PV) materials and diminishing the complexity of multi-cell PV modules. The LSC concept can also enable unconventional solar-energy conversion devices such as PV windows that can be especially useful in highly populated urban areas. Here we demonstrate low-loss, large-area (up to about 90 × 30 cm2) LSCs fabricated from colloidal core/shell quantum dots (QDs) whose optical spectra are tailored so as to minimize self-absorption of waveguided radiation. For improved compatibility with a polymer matrix and enhanced stability, QDs are encapsulated into silica shells, which allows for maintaining high emission efficiencies (70% quantum yields) under four-month exposure to air and light, and heat treatments up to 200 C. The QD/polymer composites are processed into devices using standard doctor-blade deposition onto commercial window glasses. The fabricated semi-transparent devices demonstrate internal quantum efficiencies of more than 10% for dimensions of tens of centimetres.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Thick-shell, type-I CdSe/Cd1−xZnxS g-QDs.
Figure 2: Silica-coated g-QDs.
Figure 3: Tests of photostability and thermal stability of silica-coated and uncoated g-QDs.
Figure 4: Fabrication of thin-film LSCs by a doctor-blade technique.
Figure 5: Evaluation of the performance of fabricated devices.

References

  1. 1

    Debije, M. G. & Verbunt, P. P. C. Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2, 12–35 (2012).

    Article  Google Scholar 

  2. 2

    Sark, W. G. J. H. M. v. et al. Luminescent solar concentrators—a review of recent results. Opt. Express 16, 21773–21792 (2008).

    Article  Google Scholar 

  3. 3

    Chemisana, D. Building integrated concentrating photovoltaics: a review. Renew. Sustain. Energy Rev. 15, 603–611 (2011).

    Article  Google Scholar 

  4. 4

    Leow, S. W., Corrado, C., Osborn, M. & Carter, S. A. High and low concentrator systems for solar electric applications VIII. Proc. SPIE 8821, 882103 (2013).

    Article  Google Scholar 

  5. 5

    Klimov, V. I., Baker, T. A., Lim, J., Velizhanin, K. A. & McDaniel, H. Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots. ACS Photon. 3, 1138–1148 (2016).

    Article  Google Scholar 

  6. 6

    Zhao, Y. & Lunt, R. R. Transparent luminescent solar concentrators for large-area solar windows enabled by massive Stokes-shift nanocluster phosphors. Adv. Energy Mater. 3, 1143–1148 (2013).

    Article  Google Scholar 

  7. 7

    Purcell-Milton, F. & Gun’ko, Y. K. Quantum dots for luminescent solar concentrators. J. Mater. Chem. 22, 16687–16697 (2012).

    Article  Google Scholar 

  8. 8

    Kim, J. Y., Voznyy, O., Zhitomirsky, D. & Sargent, E. H. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv. Mater. 25, 4986–5010 (2013).

    Article  Google Scholar 

  9. 9

    Meinardi, F. et al. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photon. 8, 392–399 (2014).

    Article  Google Scholar 

  10. 10

    Bradshaw, L. R., Knowles, K. E., McDowall, S. & Gamelin, D. R. Nanocrystals for luminescent solar concentrators. Nano Lett. 15, 1315–1323 (2015).

    Article  Google Scholar 

  11. 11

    Erickson, C. S. et al. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8, 3461–3467 (2014).

    Article  Google Scholar 

  12. 12

    Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotech. 10, 878–885 (2015).

    Article  Google Scholar 

  13. 13

    Krumer, Z. et al. Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).

    Article  Google Scholar 

  14. 14

    Knowles, K. E., Kilburn, T. B., Alzate, D. G., McDowall, S. & Gamelin, D. R. Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators. Chem. Commun. 51, 9129–9132 (2015).

    Article  Google Scholar 

  15. 15

    Li, C. et al. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots. Sci. Rep. 5, 17777 (2015).

    Article  Google Scholar 

  16. 16

    Gallagher, S. J., Norton, B. & Eames, P. C. Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices. Sol. Energy 81, 813–821 (2007).

    Article  Google Scholar 

  17. 17

    Ma, Y. et al. Bulk synthesis of homogeneous and transparent bulk core/multishell quantum dots/PMMA nanocomposites with bright luminescence. J. Appl. Polym. Sci. 130, 1548–1553 (2013).

    Article  Google Scholar 

  18. 18

    Coropceanu, I. & Bawendi, M. G. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14, 4097–4101 (2014).

    Article  Google Scholar 

  19. 19

    Lee, J., Sundar, V. C., Heine, J. R., Bawendi, M. G. & Jensen, K. F. Full color emission from II–VI semiconductor quantum dot–polymer composites. Adv. Mater. 12, 1102–1105 (2000).

    Article  Google Scholar 

  20. 20

    Walker, G. W. et al. Quantum-dot optical temperature probes. Appl. Phys. Lett. 83, 3555–3557 (2003).

    Article  Google Scholar 

  21. 21

    Bronstein, N. D. et al. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 8, 44–53 (2014).

    Article  Google Scholar 

  22. 22

    Bae, W. K., Brovelli, S. & Klimov, V. I. Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bull. 38, 721–730 (2013).

    Article  Google Scholar 

  23. 23

    Koike, Y., Tanio, N. & Ohtsuka, Y. Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses. Macromolecules 22, 1367–1373 (1989).

    Article  Google Scholar 

  24. 24

    Koczkur, K. M., Mourdikoudis, S., Polavarapu, L. & Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44, 17883–17905 (2015).

    Article  Google Scholar 

  25. 25

    Lim, J. et al. Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1−xCdxS core/shell heterostructured quantum dots. Adv. Mater. 26, 8034–8040 (2014).

    Article  Google Scholar 

  26. 26

    Piryatinski, A., Ivanov, S. A., Tretiak, S. & Klimov, V. I. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals. Nano Lett. 7, 108–115 (2007).

    Article  Google Scholar 

  27. 27

    García-Santamaría, F. et al. Suppressed Auger recombination in ‘giant’ nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  Google Scholar 

  28. 28

    García-Santamaría, F. et al. Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core–shell interface. Nano Lett. 11, 687–693 (2011).

    Article  Google Scholar 

  29. 29

    Brovelli, S. et al. Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nat. Commun. 2, 280 (2011).

    Article  Google Scholar 

  30. 30

    Bae, W. K. et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. ACS Nano 7, 3411–3419 (2013).

    Article  Google Scholar 

  31. 31

    Darbandi, M., Thomann, R. & Nann, T. Single quantum dots in silica spheres by microemulsion synthesis. Chem. Mater. 17, 5720–5725 (2005).

    Article  Google Scholar 

  32. 32

    Hu, X. & Gao, X. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano 4, 6080–6086 (2010).

    Article  Google Scholar 

  33. 33

    Aubert, T. et al. Bright and stable CdSe/CdS@SiO2 nanoparticles suitable for long-term cell labeling. ACS Appl. Mater. Interfaces 6, 11714–11723 (2014).

    Article  Google Scholar 

  34. 34

    Xu, Y., Lian, J., Mishra, N. & Chan, Y. Multifunctional semiconductor nanoheterostructures via site-selective silica encapsulation. Small 9, 1908–1915 (2013).

    Article  Google Scholar 

  35. 35

    Hutter, E. M. et al. Method to incorporate anisotropic semiconductor nanocrystals of all shapes in an ultrathin and uniform silica shell. Chem. Mater. 26, 1905–1911 (2014).

    Article  Google Scholar 

  36. 36

    Koole, R. et al. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mater. 20, 2503–2512 (2008).

    Article  Google Scholar 

  37. 37

    Yang, P., Ando, M. & Murase, N. Highly luminescent CdSe/CdxZn1−xS quantum dots coated with thickness-controlled SiO2 shell through silanization. Langmuir 27, 9535–9540 (2011).

    Article  Google Scholar 

  38. 38

    Wengeler, L., Schmitt, M., Peters, K., Scharfer, P. & Schabel, W. Comparison of large scale coating techniques for organic and hybrid films in polymer based solar cells. Chem. Eng. Process. 68, 38–44 (2013).

    Article  Google Scholar 

  39. 39

    Meeks, K., Pantoya, M. L. & Apblett, C. Deposition and characterization of energetic thin films. Combust. Flame 161, 1117–1124 (2014).

    Article  Google Scholar 

  40. 40

    Suzuki, K. et al. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).

    Article  Google Scholar 

  41. 41

    Wurth, C., Grabolle, M., Pauli, J., Spieles, M. & Resch-Genger, U. Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Anal. Chem. 83, 3431–3439 (2011).

    Article  Google Scholar 

  42. 42

    Bomm, J. et al. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 95, 2087–2094 (2011).

    Article  Google Scholar 

  43. 43

    Kagan, C. R., Murray, C. B., Nirmal, M. & Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre for Advanced Solar Photophysics (CASP), an Energy Frontier Research Centre funded by the US Department of Energy, Office of Science, Basic Energy Sciences. The authors would like to thank N. S. Makarov for assistance in setting up a system for accelerated photostability tests.

Author information

Affiliations

Authors

Contributions

J.L. fabricated and characterized the QD samples. H.L. developed the procedure for QD overcoating with silica and conducted characterization of the resulting QD/silica structures. H.L. and K.W. fabricated devices using a doctor-blade approach. K.W. characterized and analysed their LSC performance. H.-J.S. fabricated and characterized coupled LSC–PV devices. V.I.K. initiated the study, developed the analytical LSC model, and wrote the manuscript with contributions from all co-authors. H.L. and K.W. contributed equally to this work.

Corresponding author

Correspondence to Victor I. Klimov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–2, Supplementary Notes 16 and Supplementary References (PDF 2073 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wu, K., Lim, J. et al. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat Energy 1, 16157 (2016). https://doi.org/10.1038/nenergy.2016.157

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing