Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defects in perovskite-halides and their effects in solar cells

Subjects

Abstract

Solar cells based on perovskite-halide light absorbers have a unique set of characteristics that could help alleviate the global dependence on fossil fuels for energy generation. They efficiently convert sunlight into electricity using Earth-abundant raw materials processed from solution at low temperature. Thus, they offer potential for cost reductions compared with or in combination with other photovoltaic technologies. Nevertheless, to fully exploit the potential of perovskite-halides, several important challenges must be overcome. Given the nature of the materials — relatively soft ionic solids — one of these challenges is the understanding and control of their defect structures. Currently, such understanding is limited, restricting the power conversion efficiencies of these solar cells from reaching their thermodynamic limit. This Review describes the state of the art in the understanding of the origin and nature of defects in perovskite-halides and their impact on carrier recombination, charge-transport, band alignment, and electrical instability, and provides a perspective on how to make further progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects associated with defects in semiconductors and solar cells.
Figure 2: Defect formation energies.
Figure 3: The monomolecular recombination constant in CH3NH3PbI3.
Figure 4: Charge transport in CH3NH3PbI3.
Figure 5: Sub-bandgap density of states.
Figure 6: Cross-sectional mapping of the electrostatic properties of solar cells.
Figure 7: Experimental determination of the mobile ion(s) in CH3NH3PbI3.

Similar content being viewed by others

References

  1. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). This work was the first study of a solid-state perovskite-sensitized solar cell using a mesoporous TiO2 anode.

    Google Scholar 

  2. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–648 (2012). This work was the first study of a solid-state perovskite-halide solar cell without an electrically active mesoporous anode showing that perovskite-halides can also support charge transport.

    Google Scholar 

  3. Best Research-Cell Efficiencies (National Renewable Energy Laboratory, 2016); http://go.nature.com/2exvAq0

  4. Weber, D. CH3NH3PbX3, ein Pb(II)-system mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforsch. B 33, 1443–1445 (1978).

    Google Scholar 

  5. Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic–inorganic halides containing <110>-oriented perovskite sheets. Science 267, 1473–1476 (1995).

    Google Scholar 

  6. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Google Scholar 

  7. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    Google Scholar 

  8. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10, 391–402 (2015).

    Google Scholar 

  9. Park, N. G. Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015).

    Google Scholar 

  10. Queisser, H. J. & Haller, E. E. Defects in semiconductors: some fatal, some vital. Science 281, 945–950 (1998).

    Google Scholar 

  11. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Google Scholar 

  12. Hall, R. N. Electron-hole recombination in germanium. Phys. Rev. 87, 387 (1952).

    Google Scholar 

  13. Shockley, W. & Read, W. T. Statistics of the recombination of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Google Scholar 

  14. Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014). This was the first thorough study of the carrier-density dependent recombination dynamics in CH3NH3PbI3 suggesting that defects were important at densities relevant for solar cell operation.

    Google Scholar 

  15. Stranks, S. D. et al. Recombination kinetics in organic–inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Google Scholar 

  16. Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    Google Scholar 

  17. Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Google Scholar 

  18. Seeger, K. Semiconductor Physics (Springer-Verlag Berlin Heidelberg, 2004).

    Google Scholar 

  19. Conwell, E. & Weisskopf, V. F. Theory of impurity scattering in semiconductors. Phys. Rev. 77, 388–390 (1950).

    Google Scholar 

  20. McGill, T. C. & Baron, R. Neutral impurity scattering in semiconductors. Phys. Rev. B 11, 5208–5210 (1975).

    Google Scholar 

  21. Seto, J. Y. W. The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247–5254 (1975).

    Google Scholar 

  22. Le Comber, P. G. & Spear, W. E. Electronic transport in amorphous silicon films. Phys. Rev. Lett. 25, 509–511 (1970).

    Google Scholar 

  23. Nelson, J. The Physics of Solar Cells (Imperial College Press, 2003).

    Google Scholar 

  24. Kim, J., Lee, S. H., Lee, J. H. & Hong, K. H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

    Google Scholar 

  25. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). The first study of the energetics of native point defects in CH3NH3PbI3 leading to the suggestion that highly detrimental defects would be difficult to form in this perovskite.

    Google Scholar 

  26. Agiorgousis, M. L., Sun, Y., Zeng, H. & Zhang, S. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3 . J. Am. Chem. Soc. 136, 14570–14575 (2014).

    Google Scholar 

  27. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

    Google Scholar 

  28. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Google Scholar 

  29. Buin, A. et al. Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014).

    Google Scholar 

  30. Xu, J. et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015).

    Google Scholar 

  31. Buin, A., Comin, R., Xu, J., Ip, A. H. & Sargent, E. H. Halide-dependent electronic structure of organolead perovskite materials. Chem. Mater. 27, 4405–4412 (2015).

    Google Scholar 

  32. Stranks, S. D., Nayak, P. K., Zhang, W., Stergiopoulos, T. & Snaith, H. J. Formation of thin films of organic–inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 54, 3240–3248 (2015).

    Google Scholar 

  33. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Google Scholar 

  34. Bi, C. et al. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2, 18508–18514 (2014).

    Google Scholar 

  35. Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Google Scholar 

  36. Adinolfi, V. et al. The in-gap electronic state spectrum of methylammonium lead iodide single-crystal perovskites. Adv. Mater. 28, 3406–3410 (2016). This work was the first unambiguous measurement in the sub-gap density-of-states spectrum in a perovskite-halide single crystal.

    Google Scholar 

  37. Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). This work was the first to show that the interface between the perovskite and PCBM played an important role in suppressing J–V hysteresis induced by mobile defects.

    Google Scholar 

  38. Even, J., Pedesseau, L. & Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).

    Google Scholar 

  39. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Google Scholar 

  40. Valverde-Chávez, D. A. et al. Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3 . Energy Environ. Sci. 8, 3700–3707 (2015).

    Google Scholar 

  41. Grancini, G. et al. Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites. Nat. Photon. 9, 695–701 (2015).

    Google Scholar 

  42. Tvingstedt, K. et al. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014). This work was the first study to link non-radiative recombination channels to the open-circuit voltage in perovskite-halide solar cells.

    Google Scholar 

  43. Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Google Scholar 

  44. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Google Scholar 

  45. Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2015).

    Google Scholar 

  46. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    Google Scholar 

  47. de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Google Scholar 

  48. Bi, Y. et al. Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 7, 923–928 (2016).

    Google Scholar 

  49. Galkowski, K. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9, 962–970 (2016).

    Google Scholar 

  50. Savenije, T. J. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5, 2189–2194 (2014). This was the first study to demonstrate that the carrier mobility in the room temperature phase of CH3NH3PbI3 is limited by phonon scattering rather than by defects.

    Google Scholar 

  51. Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

    Google Scholar 

  52. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Google Scholar 

  53. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Google Scholar 

  54. Lindblad, R. et al. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5, 648–653 (2014).

    Google Scholar 

  55. Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

    Google Scholar 

  56. Philippe, B. et al. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures — a photoelectron spectroscopy investigation. Chem. Mater. 27, 1720–1731 (2015).

    Google Scholar 

  57. Schulz, P. et al. Electronic level alignment in inverted organometal perovskite solar cells. Adv. Mater. Interfaces 2, 1400532 (2015).

    Google Scholar 

  58. Samiee, M. et al. Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105, 153502 (2014).

    Google Scholar 

  59. Duan, H.-S. et al. The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17, 112–116 (2014).

    Google Scholar 

  60. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373 (1987).

    Google Scholar 

  61. Lin, Q. et al. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2014).

    Google Scholar 

  62. Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

    Google Scholar 

  63. Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M. & Maier, J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015). The first study that was able to separate the contributions of electronic and ionic species to conduction in CH3NH3PbI3 and show that halogen point defects were the dominant species in ionic conduction.

    Google Scholar 

  64. van Reenen, S., Kemerink, M. & Snaith, H. J. Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015).

    Google Scholar 

  65. Richardson, G. et al. Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ. Sci. 9, 1476–1485 (2016).

    Google Scholar 

  66. Edri, E. et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014). This work was the first attempt to experimentally map the type of junction in a perovskite-halide solar cell.

    Google Scholar 

  67. Bergmann, V. W. et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5, 5001 (2014).

    Google Scholar 

  68. Jiang, C. et al. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015).

    Google Scholar 

  69. Guerrero, A., Juarez-Perez, E. J., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Electrical field profile and doping in planar lead halide perovskite solar cells. Appl. Phys. Lett. 105, 133902 (2014).

    Google Scholar 

  70. Abou-Ras, D., Kirchartz, T. & Rau, U. Advanced Characterization Techniques for Thin Film Solar Cells (Wiley, 2011).

    Google Scholar 

  71. De Bastiani, M. et al. Ion migration and the role of preconditioning cycles in the stabilization of the J–V characteristics of inverted hybrid perovskite solar cells. Adv. Energy Mater. 6, 1501453 (2015).

    Google Scholar 

  72. Shao, Y., Yuan, Y. & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016).

    Google Scholar 

  73. Tao, C. et al. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells. Energy Environ. Sci. 8, 2365–2370 (2015).

    Google Scholar 

  74. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Google Scholar 

  75. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Google Scholar 

  76. Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015).

    Google Scholar 

  77. Frost, J. M., Butler, K. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).

    Google Scholar 

  78. Coll, M. et al. Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015).

    Google Scholar 

  79. Beilsten-Edmands, J., Eperon, G. E., Johnson, R. D., Snaith, H. J. & Radaelli, P. G. Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 173502 (2015).

    Google Scholar 

  80. Eperon, G. E. et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).

    Google Scholar 

  81. Mizusaki, J., Arai, K. & Fueki, K. Ionic conduction of the perovskite-type halides. Solid State Ionics 11, 203–211 (1983).

    Google Scholar 

  82. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004).

    Google Scholar 

  83. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    Google Scholar 

  84. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Google Scholar 

  85. Leijtens, T. et al. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015).

    Google Scholar 

  86. Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015).

    Google Scholar 

  87. Tian, Y. et al. Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. Phys. Chem. Chem. Phys. 17, 24978–24987 (2015).

    Google Scholar 

  88. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. II Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Google Scholar 

  89. Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).

    Google Scholar 

  90. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Google Scholar 

  91. Sutter-Fella, C. M. et al. High photoluminescence quantum yield in band gap tunable bromide containing mixed halide perovskites. Nano Lett. 16, 800–806 (2016).

    Google Scholar 

  92. Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    Google Scholar 

  93. DeQuilettes, D. W. et al. Photo-induced halide redistribution in organic-inorganic perovskite films. Nat. Commun. 7, 11683 (2016).

    Google Scholar 

  94. Tuomisto, F. & Makkonen, I. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85, 1583–1631 (2013).

    Google Scholar 

  95. Watkins, G. D. & Corbett, J. W. Defects in irradiated silicon: electron paramagnetic resonance and electron-nuclear double resonance of the Si–E center. Phys. Rev. 134, A1359–A1377 (1964).

    Google Scholar 

  96. Chang, J. et al. Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. J. Mater. Chem. A 4, 887–893 (2016).

    Google Scholar 

  97. Zhang, W. et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015).

    Google Scholar 

  98. Ohmann, R. et al. Real-space imaging of the atomic structure of organic–inorganic perovskite. J. Am. Chem. Soc. 137, 16049–16054 (2015).

    Google Scholar 

  99. Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

    Google Scholar 

  100. Li, J.-J. et al. Microscopic investigation of grain boundaries in organolead halide perovskite solar cells. ACS Appl. Mater. Interfaces 7, 28518–28523 (2015).

    Google Scholar 

  101. Grancini, G. et al. CH3NH3PbI3 perovskite single crystals: surface photophysics and their interaction with the environment. Chem. Sci. 6, 7305–7310 (2015).

    Google Scholar 

  102. Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    Google Scholar 

  103. Shkrob, I. A. & Marin, T. W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds. J. Phys. Chem. Lett. 5, 1066–1071 (2014).

    Google Scholar 

  104. Sadoughi, G. et al. Observation and mediation of the presence of metallic lead in organic-inorganic perovskite films. ACS Appl. Mater. Interfaces 7, 13440–13444 (2015).

    Google Scholar 

  105. Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    Google Scholar 

  106. Heath, J. T., Cohen, J. D. & Shafarman, W. N. Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling. J. Appl. Phys. 95, 1000–1010 (2004).

    Google Scholar 

  107. Mönch, W. Electronic Properties of Semiconductor Interfaces (Springer-Verlag Berlin Heidelberg, 2004).

    Google Scholar 

  108. Haight, R. Electron dynamics at surfaces. Surf. Sci. Rep. 21, 275–325 (1995).

    Google Scholar 

  109. Li, C. et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B 64, 702–707 (2008).

    Google Scholar 

  110. Mineral Commodity Summaries 2016 (US Geological Survey, 2016); http://go.nature.com/2e3h6cl

  111. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Google Scholar 

  112. Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013).

    Google Scholar 

  113. Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013).

    Google Scholar 

  114. Ball, J. M. et al. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015).

    Google Scholar 

  115. Azzopardi, B. et al. Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy Environ. Sci. 4, 3741–3753 (2011).

    Google Scholar 

  116. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Google Scholar 

Download references

Acknowledgements

A.P. and J.M.B. thank the European Union Seventh Framework Programme (FP7/2007-2013) for funding under grant agreement no. 604032 of the MESO project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Petrozza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, J., Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat Energy 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing