Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Expert elicitation survey on future wind energy costs


Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends—in part—on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world’s foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24–30% reductions by 2030 and 35–41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Summary of expert elicitation findings.
Figure 2: Expert estimates of median-scenario LCOE.
Figure 3: Relative impact of drivers for median-scenario LCOE reduction in 2030.
Figure 4: Estimated change in LCOE over time across all three scenarios.
Figure 5: Historical and forecasted onshore wind LCOE and learning rates.
Figure 6: Estimated change in LCOE comparing expert survey results with other forecasts.


  1. 1

    Wiser, R. & Bolinger, M. 2015 Wind Technologies Market Report (US Department of Energy, 2016).

    Google Scholar 

  2. 2

    Wiser, R. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).

    Google Scholar 

  3. 3

    Global Wind Report: Annual Market Update 2015 (Global Wind Energy Council, 2016).

  4. 4

    Marvel, K., Kravitz, B. & Caldeira, K. Geophysical limits to global wind power. Nat. Clim. Change 3, 118–121 (2012).

    Article  Google Scholar 

  5. 5

    Barthelmie, R. J. & Pryor, S. C. Potential contribution of wind energy to climate change mitigation. Nat. Clim. Change 4, 684–688 (2014).

    Article  Google Scholar 

  6. 6

    Cochran, J., Mai, T. & Bazilian, M. Meta-analysis of high-penetration renewable energy scenarios. Renew. Sust. Energy Rev. 29, 246–253 (2014).

    Article  Google Scholar 

  7. 7

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O., Pichs-Madruga, R. & Sokona, Y. ) (Cambridge Univ. Press, 2014).

    Google Scholar 

  8. 8

    Luderer, G. et al. The role of renewable energy in climate stabilization: results from the EMF27 scenarios. Climatic Change 123, 427–441 (2014).

    Article  Google Scholar 

  9. 9

    World Energy Outlook 2015 (International Energy Agency, 2015);

  10. 10

    Global Wind Energy Outlook 2014 (Global Wind Energy Council, 2014);

  11. 11

    MacDonald, A. et al. Future cost-competitive electricity systems and their impact on US CO2 emissions. Nat. Clim. Change 6, 526–531 (2016).

    Article  Google Scholar 

  12. 12

    Lindman, Å. & Söderholm, P. Wind power learning rates: a conceptual review and meta-analysis. Energy Econ. 34, 754–761 (2012).

    Article  Google Scholar 

  13. 13

    Rubin, E. S., Azevedo, I., Jaramillo, P. & Yeh, S. A review of learning rates for electricity supply technologies. Energy Policy 86, 198–218 (2015).

    Article  Google Scholar 

  14. 14

    Ferioli, F., Schoots, K. & Van der Zwaan, B. C. C. Use and limitations of learning curves for energy technology policy: a component-learning hypothesis. Energy Policy 37, 2525–2535 (2009).

    Article  Google Scholar 

  15. 15

    Mukora, A., Winskel, M., Jeffrey, H. F. & Mueller, M. Learning curves for emerging energy technologies. Proc. Institution of Civil Engineers – Energy 162, 151–159 (2009).

    Article  Google Scholar 

  16. 16

    Ek, K. & Söderholm, P. Technology learning in the presence of public R&D: the case of European wind power. Ecol. Econ. 69, 2356–2362 (2010).

    Article  Google Scholar 

  17. 17

    Junginger, M., Sark, W. V. & Faaij, A. Technological Learning in the Energy Sector: Lessons for Policy, Industry and Science (Edward Elgar, 2010).

    Book  Google Scholar 

  18. 18

    Yeh, S. & Rubin, E. S. A review of uncertainties in technology experience curves. Energy Econ. 34, 762–771 (2012).

    Article  Google Scholar 

  19. 19

    Witajewski-Baltvilks, J., Verdolini, E. & Tavoni, M. Bending the learning curve. Energy Econ. 52, S86–S99 (2015).

    Article  Google Scholar 

  20. 20

    Arrow, K. J. The economic implications of learning by doing. Rev. Econ. Studies 29, 155–173 (1962).

    Article  Google Scholar 

  21. 21

    Nordhaus, W. D. The Perils of the Learning Model for Modeling Endogenous Technological Change (National Bureau of Economic Research, 2009).

    Book  Google Scholar 

  22. 22

    Fingersh, L., Hand, M. & Laxson, A. Wind Turbine Design Cost and Scaling Model (National Renewable Energy Laboratory, 2006).

    Book  Google Scholar 

  23. 23

    Offshore Wind Cost Reduction Pathways Study (The Crown Estate, 2012);

  24. 24

    Sieros, G., Chaviaropoulos, P., Sørensen, J., Bulder, B. & Jamieson, P. Upscaling wind turbines: theoretical and practical aspects and the impact on the cost of energy. Wind Energy 15, 3–17 (2010).

    Article  Google Scholar 

  25. 25

    Hobohm, J. et al. Cost Reduction Potentials of Offshore Wind Power in Germany. Prepared for the German Offshore Wind Energy Foundation (Fitchner-Prognos, 2013).

    Google Scholar 

  26. 26

    Valpy, B. & English, P. Future Renewable Energy Costs: Offshore Wind (BVG Associates and KIC InnoEnergy, 2014).

    Google Scholar 

  27. 27

    Junginger, M., Faaij, A. & Turkenburg, W. C. Cost reduction prospects for offshore wind farms. Wind Eng. 28, 97–118 (2004).

    Article  Google Scholar 

  28. 28

    Cost Reduction Options for Offshore Wind in the Netherlands FID 2010–2020 (TKI Wind op Zee, 2015);

  29. 29

    Cohen, J. et al. Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction (National Renewable Energy Laboratory, 2008).

    Book  Google Scholar 

  30. 30

    Neij, L. Cost development of future technologies for power generation—A study based on experience curves and complementary bottom-up assessments. Energy Policy 36, 2200–2211 (2008).

    Article  Google Scholar 

  31. 31

    Wüstemeyer, C., Madlener, R. & Bunn, D. W. A stakeholder analysis of divergent supply-chain trends for the European onshore and offshore wind installations. Energy Policy 80, 36–44 (2015).

    Article  Google Scholar 

  32. 32

    Verdolini, E., Anadon, L. D., Baker, E., Bosetti, V. & Reis, L. A. The Future Prospects of Energy Technologies: Insights from Expert Elicitations (Fondazione Eni Enrico Mattei, 2016);

    Google Scholar 

  33. 33

    Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl Acad. Sci. USA 111, 7176–7184 (2014).

    Article  Google Scholar 

  34. 34

    Kotra, J. P., Lee, M. P., Eisenberg, N. A. & DeWispelare, A. R. Branch Technical Position on the Use of Expert Elicitation in the High-Level Radioactive Waste Program (Nuclear Regulatory Commission, 1996).

    Book  Google Scholar 

  35. 35

    Meyer, M. A. & Booker, J. M. Eliciting and Analyzing Expert Judgment: A Practical Guide (Society for Industrial and Applied Mathematics, 2001).

    Book  Google Scholar 

  36. 36

    Knol, A. B., Slottje, P. E., van der Sluijs, J. P. & Lebret, E. The use of expert elicitation in environmental health impact assessment: a seven step procedure. Environ. Health 9, (2010).

  37. 37

    Hora, S. in Advances in Decision Analysis: From Foundations to Applications (eds Edwards, W., Miles, R. F. & von Winterfeldt, D. ) (Cambridge Univ. Press, 2007).

    Google Scholar 

  38. 38

    Coppersmith, K. J., Jenni, K. E., Perman, R. C. & Youngs, R. R. in Volcanic and Tectonic Hazard Assessment for Nuclear Facilities (eds Connor, C. B., Chapman, N. A. & Connor, L. J. ) (Cambridge Univ. Press, 2009).

    Google Scholar 

  39. 39

    Climate Change Assessments: Review of the Processes and Procedures of the IPCC (InterAcademy Council, 2010).

  40. 40

    NRC Prospective Evaluation of Applied Energy Research and Development at DOE (Phase Two) (The National Academies, 2007).

  41. 41

    Baker, E., Bosetti, V., Anadon, L. D., Henrion, M. & Reis, L. A. Future costs of key low-carbon energy technologies: Harmonization and aggregation of energy technology expert elicitation data. Energy Policy 80, 219–232 (2015).

    Article  Google Scholar 

  42. 42

    Gillenwater, M. Probabilistic decision model of wind power investment and influence of green power market. Energy Policy 63, 1111–1125 (2013).

    Article  Google Scholar 

  43. 43

    Kempton, W., McClellan, S. & Ozkan, D. Massachusetts Offshore Wind Future Cost Study (Univ. Delaware Special Initiative on Offshore Wind, 2016).

    Google Scholar 

  44. 44

    Curtright, A. E., Morgan, M. G. & Keith, D. Expert assessment of future photovoltaic technology. Environ. Sci. Technol. 42, 9031–9038 (2008).

    Article  Google Scholar 

  45. 45

    Joskow, P. L. Comparing the costs of intermittent and dispatchable electricity generating technologies. Am. Econ. Rev. 100, 238–241 (2011).

    Article  Google Scholar 

  46. 46

    Edenhofer, O. et al. On the economics of renewable energy sources. Energy Econ. 40, S12–S23 (2013).

    Article  Google Scholar 

  47. 47

    Mills, A. & Wiser, R. Changes in the economic value of wind energy and flexible resources at increasing penetration levels in the Rocky Mountain Power Area. Wind Energy 16, 1711–1726 (2013).

    Google Scholar 

  48. 48

    The Future Cost of Onshore Wind – An Accelerating Rate of Progress. Wind Insight (Bloomberg New Energy Finance, 2015).

  49. 49

    Criqui, P., Mima, S., Menanteau, P. & Kitous, A. Mitigation strategies and energy technology learning: an assessment with the POLES model. Technol. Forecast. Soc. Change 90, 119–136 (2015).

    Article  Google Scholar 

  50. 50

    Henbest, S. et al. New Energy Outlook 2015 Wind (Bloomberg New Energy Finance, 2015).

    Google Scholar 

  51. 51

    Voormolen, J. A., Junginger, H. M. & van Sark, W. G. J. H. M. Unravelling historical cost developments of offshore wind energy in Europe. Energy Policy 88, 435–444 (2016).

    Article  Google Scholar 

  52. 52

    van der Zwaan, B. C. C., Rivera-Tinoco, R., Lensink, S. & van den Oosterkamp, P. Cost reductions for offshore wind power: exploring the balance between scaling, learning and R&D. Renew. Energy 41, 389–393 (2012).

    Article  Google Scholar 

  53. 53

    Dismukes, D. E. & Upton, G. B. Jr Economies of scale, learning effects and offshore wind development costs. Renew. Energy 83, 61–66 (2015).

    Article  Google Scholar 

  54. 54

    Schwanitz, V. J. & Wierling, A. Offshore wind investments – Realism about cost developments is necessary. Energy 106, 170–181 (2016).

    Article  Google Scholar 

  55. 55

    H1 2016 Offshore Wind Market Outlook Wind Insight (Bloomberg New Energy Finance, 2016).

  56. 56

    Dixit, A. K. & Pindyck, R. S. Investment under Uncertainty (Princeton Univ. Press, 1994).

    Google Scholar 

  57. 57

    Wiser, R. et al. Forecasting Wind Energy Costs and Cost Drivers: The Views of the World’s Leading Experts (Lawrence Berkeley National Laboratory, 2016);

    Google Scholar 

  58. 58

    Anadón, L. D., Nemet, G. & Verdolini, E. The future cost of nuclear power using multiple expert elicitations: effects of RD&D and elicitation design. Environ. Res. Lett. 8, 1–10 (2013).

    Article  Google Scholar 

  59. 59

    Verdolini, E., Anadon, L. D., Lu, J. & Nemet, G. The effects of expert selection, elicitation design, and R&D assumptions on experts’ estimates of the future cost of photovoltaics. Energy Policy 80, 233–243 (2015).

    Article  Google Scholar 

  60. 60

    Nemet, G. F., Anadon, L. D. & Verdolini, E. Quantifying the effects of expert selection and elicitation design on experts’ confidence in their judgements about future energy technologies. Risk Analysis (2016); advance online publication.

  61. 61

    Kahneman, D., Slovic, P. & Tversky, A. Judgment Under Uncertainty: Heuristics and Biases (Cambridge Univ. Press, 1982).

    Book  Google Scholar 

  62. 62

    Revolution Now: The Future Arrives for Five Clean Energy Technologies - 2015 Update (US Department of Energy, 2015).

  63. 63

    Wind Power in Denmark: Technologies, Policies, and Results (Danish Energy Agency, 1999).

  64. 64

    Lemming, J. K., Morthorst, P. E., Clausen, N. E. & Jensen, P. H. Contribution to the Chapter on Wind Power in Energy Technology Perspectives 2008 (Risø National Laboratory for Sustainable Energy, 2009).

    Google Scholar 

Download references


This study was conducted under the auspices of the IEA Wind Implementing Agreement for Cooperation in the Research, Development, and Deployment of Wind Energy Systems (IEA Wind). It would not have been possible without the funding of the US Department of Energy (DOE) under Contract Nos DE-AC02-05CH11231 (LBNL) and DE-AC36-09GO28308 (NREL), and the support of the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant number 1068864). While the individuals providing critical contributions to this work are too numerous to list here, we especially thank our IEA Wind collaborators: V. Berkhout, A. Duffy, B. Cleary, R. Lacal-Arántegui, L. Husabø, J. Lemming, S. Lüers, A. Mast, W. Musial, B. Prinsen, K. Skytte, G. Smart, B. Smith, I. Bakken Sperstad, P. Veers, A. Vitina and D. Weir.

Author information




All authors contributed to the formulation of the research, construction of the survey, and to editing and discussing the paper. R.W. led the overall effort, and wrote the paper. K.J. and J.S. helped lead the implementation and execution of the online survey, as well as the subsequent analysis of the results. E.B. provided insight into expert elicitation design, while M.H., E.L. and A.S. contributed wind expertise.

Corresponding author

Correspondence to Ryan Wiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Discussion, Supplementary Notes 1–3, Supplementary Figures 1–16, Supplementary Tables 1–20, Supplementary References. (PDF 3477 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wiser, R., Jenni, K., Seel, J. et al. Expert elicitation survey on future wind energy costs. Nat Energy 1, 16135 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing