Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A regenerative elastocaloric heat pump

Abstract

A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg−1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of four operational steps of the elastocaloric regenerator-based device.
Figure 2: Elastocaloric regenerator and an example of its operation.
Figure 3: Performance of the elastocaloric device at different operation conditions.
Figure 4: Comparison of the performance of the developed elastocaloric device with other reported caloric-based systems.

Similar content being viewed by others

References

  1. Fähler, S. et al. Caloric effects in ferroic materials: New concepts for cooling. Adv. Eng. Mater. 14, 10–19 (2012).

    Article  Google Scholar 

  2. Mañosa, L., Planes, A. & Acet, M. Advanced materials for solid-state refrigeration. J. Mater. Chem. A 1, 4925–4936 (2103).

    Article  Google Scholar 

  3. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    Article  Google Scholar 

  4. Moya, X., Defay, E., Heine, V. & Mathur, N. D. Too cool to work. Nat. Phys. 11, 202–205 (2015).

    Article  Google Scholar 

  5. Takeuchi, I. & Sandeman, K. Solid-state cooling with caloric materials. Phys. Today 68, 48–54 (December, 2015).

    Article  Google Scholar 

  6. Kitanovski, A. et al. Magnetocaloric Energy Conversion: From Theory to Applications (Springer, 2015).

    Book  Google Scholar 

  7. Goetzler, W., Zogg, R., Young, J. & Johnson, C. Energy Savings Potential and R&D Opportunities for Non-Vapor-Compression HVAC Technologies (Navigant Consulting, Inc., prepared for U.S. Department of Energy, 2014).

    Google Scholar 

  8. Tušek, J. et al. The elastocaloric effect: a way to cool efficiently. Adv. Energy Mater. 5, 1500361 (2015).

    Article  Google Scholar 

  9. Schmidt, M., Schütze, A. & Seelecke, S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. Int. J. Refrig. 54, 88–97 (2015).

    Article  Google Scholar 

  10. Ossmer, H., Miyazaki, S. & Kohl, M. Elastocaloric heat pumping using a shape memory alloy foil device. in 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems 726–729 (2015).

    Chapter  Google Scholar 

  11. Qian, S. et al. Design, development and testing of a compressive thermoelastic cooling system. in International Congress of Refrigeration 2015 (2015).

    Google Scholar 

  12. Tušek, J., Engelbrecht, K., Mikkelsen, L. P. & Pryds, N. Elastocaloric effect of Ni-Ti wire for application in a cooling device. J. Appl. Phys. 117, 124901 (2015).

    Article  Google Scholar 

  13. Buehler, W. J., Gilfrich, J. W. & Wiley, R. C. Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 34, 1475–1477 (1963).

    Article  Google Scholar 

  14. Jani, J. M., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).

    Article  Google Scholar 

  15. Cui, J. et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl. Phys. Lett. 101, 073904 (2012).

    Article  Google Scholar 

  16. Ossmer, H. et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta Mater. 81, 9–20 (2014).

    Article  Google Scholar 

  17. Pataky, G. J., Ertekin, E. & Sehitoglu, H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiA. Acta Mater. 96, 420–427 (2015).

    Article  Google Scholar 

  18. Chluba, C. et al. Ultralow-fatigue shape memory alloy films. Science 348, 1004–1007 (2015).

    Article  Google Scholar 

  19. Schmidt, M. et al. Thermal stabilization of NiTiCuV shape memory alloys: observations during elastocaloric training. Shape Mem. Superelast. 1, 132–141 (2015).

    Article  Google Scholar 

  20. Mañosa, L., Jarque-Farnos, S., Vives, E. & Planes, A. Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys. Appl. Phys. Lett. 103, 211904 (2013).

    Article  Google Scholar 

  21. Xiao, F., Fukuda, T., Kakeshita, T. & Jin, X. Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy. Acta Mater. 87, 8–14 (2015).

    Article  Google Scholar 

  22. Millán-Solsona, R. et al. Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys. Appl. Phys. Lett. 105, 241901 (2014).

    Article  Google Scholar 

  23. Sun, W., Liu, J., Lu, B., Li, Y. & Yan, A. Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys. Scr. Mater. 114, 1–4 (2016).

    Article  Google Scholar 

  24. Xie, Z., Sebald, G. & Guyomar, D. Elastocaloric effect dependence on pre-elongation in natural rubber. Appl. Phys. Lett. 107, 081905 (2015).

    Article  Google Scholar 

  25. Lu, B. & Liu, J. Mechanocaloric materials for solid-state cooling. Sci. Bull. 60, 1638–1643 (2015).

    Article  Google Scholar 

  26. Qian, S. et al. A review of elastocaloric cooling: materials, cycles and system integrations. Int. J. Refrig. 64, 1–19 (2016).

    Article  Google Scholar 

  27. Qian, S. et al. Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs. Int. J. Refrig. 57, 62–76 (2015).

    Article  Google Scholar 

  28. Sittner, P., Liu, Y. & Novak, V. On the origin of Lüders-like deformation of NiTi shape memory alloys. J. Mech. Phys. Solids 53, 1719–1746 (2005).

    Article  Google Scholar 

  29. Engelbrecht, K. et al. Effects of surface finish and mechanical training on Ni-Ti sheets for elastocaloric cooling. APL Mater. 4, 064110 (2016).

    Article  Google Scholar 

  30. Tušek, J., Kitanovski, A. & Poredoš, A. Geometrical optimization of packed-bed and parallel-plate active magnetic regenerators. Int. J. Refrig. 36, 1456–1464 (2013).

    Article  Google Scholar 

  31. Miyazaki, S., Imai, T., Igo, Y. & Otsuka, K. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall. Trans. A 17, 115–120 (1986).

    Article  Google Scholar 

  32. Tušek, J., Engelbrecht, K. & Pryds, N. Elastocaloric effect of a Ni-Ti plate to be applied in a regenerator-based cooling device. Sci. Technol. Built Environ. 22, 489–499 (2016).

    Article  Google Scholar 

  33. Zimm, C. et al. Description and performance of a near-room temperature magnetic refrigerator. Adv. Cryog. Eng. 43, 1759–1766 (1998).

    Article  Google Scholar 

  34. Hirano, N. et al. Development of magnetic refrigerator for room temperature application. AIP Conf. Proc. 613, 1027–1034 (2002).

    Chapter  Google Scholar 

  35. Tura, A. & Rowe, A. Permanent magnet magnetic refrigerator design and experimental characterization. Int. J. Refrig. 34, 628–639 (2011).

    Article  Google Scholar 

  36. Jacobs, S. et al. The performance of a large-scale rotary magnetic refrigerator. Int. J. Refrig. 37, 84–91 (2014).

    Article  Google Scholar 

  37. Bahl, C. R. H. et al. Development and experimental results from a 1 kW prototype AMR. Int. J. Refrig. 37, 78–83 (2014).

    Article  Google Scholar 

  38. Eriksen, D. et al. Design and experimental tests of a rotary active magnetic regenerator prototype. Int. J. Refrig. 58, 14–21 (2015).

    Article  Google Scholar 

  39. Arnold, D. S., Tura, A., Ruebsaat-Trott, A. & Rowe, A. Design improvements of a permanent magnet active magnetic refrigerator. Int. J. Refrig. 37, 99–105 (2014).

    Article  Google Scholar 

  40. Aprea, C., Greco, A., Maiorino, A. & Masselli, C. The energy performances of a rotary permanent magnet magnetic refrigerator. Int. J. Refrig. 61, 1–11 (2016).

    Article  Google Scholar 

  41. Liu, Y. The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Mater. 95, 411–427 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Jaka T. would like to acknowledge the support of DTU’s international H.C. Ørsted postdoc program and the Slovenian Research Agency (project no. Z2-7219) for supporting this work. The authors would like to thank TKC d.o.o., Ljubljana for performing the laser welding of the elastocaloric regenerators.

Author information

Authors and Affiliations

Authors

Contributions

Jaka T., K.E. and N.P. conceived the idea, designed the experiment and wrote the paper. D.E. and S.D. helped with the experimental design and running the experiments. Janez T. managed the laser-welding of the elastocaloric regenerator. N.P. supervised the project.

Corresponding authors

Correspondence to Jaka Tušek, Kurt Engelbrecht or Nini Pryds.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Table 1 and Supplementary Reference. (PDF 896 kb)

Supplementary Video 1

Demonstration of operation of the elastocaloric device captured with an infrared (IR) camera from the initial state until the steady state conditions are reached (the colour scale is in C). (MOV 4694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tušek, J., Engelbrecht, K., Eriksen, D. et al. A regenerative elastocaloric heat pump. Nat Energy 1, 16134 (2016). https://doi.org/10.1038/nenergy.2016.134

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing