Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode

Abstract

Although non-aqueous Li-ion batteries possess significantly higher energy density than their aqueous counterparts, the latter can be more feasible for grid-scale applications when cost, safety and cycle life are taken into consideration. Moreover, aqueous Zn-ion batteries have an energy storage advantage over alkali-based batteries as they can employ Zn metal as the negative electrode, dramatically increasing energy density. However, their development is plagued by a limited choice of positive electrodes, which often show poor rate capability and inadequate cycle life. Here we report a vanadium oxide bronze pillared by interlayer Zn2+ ions and water (Zn0.25V2O5nH2O), as the positive electrode for a Zn cell. A reversible Zn2+ ion (de)intercalation storage process at fast rates, with more than one Zn2+ per formula unit (a capacity up to 300 mAh g−1), is characterized. The Zn cell offers an energy density of 450 Wh l−1 and exhibits a capacity retention of more than 80% over 1,000 cycles, with no dendrite formation at the Zn electrode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rechargeable Zn metal/Zn 0.25V2O5 cell.
Figure 2: Electron microscopy analysis of the Zn0.25V2O 5nH2O nanobelts.
Figure 3: Structural analysis of the Zn0.25V2O5nH2O nanobelts.
Figure 4: Electrochemical zinc storage capability of the Zn0.25V2O5nH2O nanobelts.
Figure 5: X-ray photoelectron spectroscopy of the electrodes.
Figure 6: Operando X-ray diffraction study of the Zn0.25V2O5 electrode during cycling.

Similar content being viewed by others

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  2. Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).

    Article  Google Scholar 

  3. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  Google Scholar 

  4. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  Google Scholar 

  5. Wanger, C. T. The lithium future—resources, recycling, and the environment. Conserv. Lett. 4, 202–206 (2011).

    Article  Google Scholar 

  6. Jacoby, M. Safer lithium-ion batteries. Chem. Eng. News 91, 33–37 (2013).

    Google Scholar 

  7. Roth, P. E. & Orendorff, C. J. How electrolytes influence battery safety. Electrochem. Soc. Interface 21, 45–49 (2012).

    Article  Google Scholar 

  8. Zheng, L., Xiang, K., Xing, W., Carter, W. C. & Chiang, Y. M. Reversible aluminum-ion intercalation in prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv. Energy Mater. 5, 1401410 (2015).

    Article  Google Scholar 

  9. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article  Google Scholar 

  10. Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    Article  Google Scholar 

  11. Nam, K. W. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15, 4071–4079 (2015).

    Article  Google Scholar 

  12. Sun, X., Duffort, V., Mehdi, B. L., Browning, N. D. & Nazar, L. F. Investigation of the mechanism of Mg insertion in birnessite in non-aqueous and aqueous rechargeable Mg-ion batteries. Chem. Mater. 28, 534–542 (2016).

    Article  Google Scholar 

  13. Chamoun, M. & Steingart, D. et al. Hyper-dendritic nanoporous zinc foam anodes. NPG Asia Mater. 7, 178 (2015).

    Article  Google Scholar 

  14. White, C. D. & Zhang, K. M. Using vehicle-to-grid technology for frequency regulations and peak-load reduction. J. Power Sources 196, 3972–3980 (2011).

    Article  Google Scholar 

  15. Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    Article  Google Scholar 

  16. Kohler, J., Makihara, H., Uegaito, H., Inoue, H. & Toki, M. LiV3O8: characterization as anode materials for an aqueous rechargeable Li-ion battery system. Electrochim. Acta 46, 59–65 (2000).

    Article  Google Scholar 

  17. Wang, G. J. et al. An aqueous rechargeable lithium battery with good cycling performance. Angew. Chem. Int. Ed. 46, 295–297 (2007).

    Article  Google Scholar 

  18. Luo, J. Y., Cui, W. J., He, P. & Xia, Y. Y. Raising the cycling stability of aqueous lithium ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article  Google Scholar 

  19. Zheng, L., Young, D., Xiang, K., Carter, W. C. & Chiang, Y. M. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2012).

    Google Scholar 

  20. Pasta, M. et al. Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014).

    Article  Google Scholar 

  21. Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

    Article  Google Scholar 

  22. Wessells, C. D., Peddada, S. V., Huggins, R. A. & Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011).

    Article  Google Scholar 

  23. Xu, C. J., Li, B. H., Du, H. D. & Kang, F. Y. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012).

    Article  Google Scholar 

  24. Chen, L., Zhang, L. Y., Zhou, X. F. & Liu, Z. P. Aqueous batteries based on mixed monovalence metal ions: a new battery family. ChemSusChem 7, 2295–2302 (2014).

    Article  Google Scholar 

  25. Zhang, L., Chen, L., Zhou, X. & Liu, Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015).

    Article  Google Scholar 

  26. Lee, B. et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014).

    Article  Google Scholar 

  27. Alfaruqi, M. H. et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015).

    Article  Google Scholar 

  28. Zhang, X. G. Corrosion and Electrochemistry of Zinc (Springer, 1996).

    Book  Google Scholar 

  29. Goh, F. W. T. et al. A near-neutral chloride electrolyte for electrically rechargeable zinc-air batteries. J. Electrochem. Soc. 161, A2080–A2086 (2014).

    Article  Google Scholar 

  30. Gupta, T. & Steingart, D. et al. Improving the cycle life of a high-rate, high-potential aqueous dual ion battery using hyper-dendritic zinc and copper hexacyanoferrate. J. Power Sources 325, 22–29 (2016).

    Article  Google Scholar 

  31. Jia, Z., Wang, B. & Wang, Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater. Chem. Phys. 149, 601–606 (2015).

    Article  Google Scholar 

  32. Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article  Google Scholar 

  33. Chernova, N. A., Roppolo, M., Dillon, A. C. & Whittingham, M. S. Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. 19, 2526–2552 (2009).

    Article  Google Scholar 

  34. VanadiumCorp Vanadium Electrolyte Price (VanadiumCorp Resource, 2015); www.vanadiumcorp.com/tech/companies/price

  35. Chirayil, T., Zavalij, P. Y. & Whittingham, M. S. Hydrothermal synthesis of vanadium oxides. Chem. Mater. 10, 2629–2640 (1998).

    Article  Google Scholar 

  36. Oka, Y., Tamada, O., Yao, T. & Yamamoto, N. Synthesis and crystal structure of σ-Zn0.25V2O5. H2O with a novel type of V2O5 layer. J. Solid State Chem. 126, 65–73 (1996).

    Article  Google Scholar 

  37. Yao, T., Oka, Y. & Yamamoto, N. Layered structures of vanadium pentoxide gels. Mater. Res. Bull. 27, 669–675 (1992).

    Article  Google Scholar 

  38. Wood, D. L., Li, J. & Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275, 234–242 (2015).

    Article  Google Scholar 

  39. Mancini, M., Nobili, F., Tossici, R., Wohlfahrt-Mehrens, M. & Marassi, R. High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose. J. Power Sources 196, 9665–9671 (2011).

    Article  Google Scholar 

  40. Zhu, Y. & Wang, C. Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C 114, 2830–2841 (2010).

    Article  Google Scholar 

  41. Li, B. et al. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012).

    Article  Google Scholar 

  42. Park, M., Zhang, X., Chung, M., Less, B. G. & Sastry, M. A. A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904–7929 (2010).

    Article  Google Scholar 

  43. Biesinger, M. C., Lau, L. W. M., Gersonb, A. R. & Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010).

    Article  Google Scholar 

  44. Buchholz, D., Chagas, L. G., Vaalma, C., Wu, L. & Passerini, S. Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J. Mater. Chem. A 2, 13415–13421 (2014).

    Article  Google Scholar 

  45. Lin, C. T. et al. Study of intercalation/deintercalation of NaxCoO2 single crystals. J. Cryst. Growth 275, 606–616 (2005).

    Article  Google Scholar 

  46. Radha, S., Jayanthi, K., Breu, J. & Kamath, P. V. Relative humidity induced reversible hydration of sulfate intercalated layered double hydroxide. Clays Clay Miner. 62, 53–61 (2014).

    Article  Google Scholar 

  47. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article  Google Scholar 

  48. Le, D. B. et al. Intercalation of polyvalent cations into V2O5 aerogels. Chem. Mater. 10, 682–684 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Resources Canada; and NSERC via a Discovery Grant to L.F.N. and an NSERC Scholarship to B.D.A. The research was also supported in part by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences. We thank R. Black for his assistance with the operando mass spectrometry analysis.

Author information

Authors and Affiliations

Authors

Contributions

D.K., B.D.A. and L.F.N. designed this study. D.K. developed the synthesis protocol for the materials, the fabrication of the positive electrodes, and carried out the electrochemical experiments together with B.D.A., who contributed to the control of electrochemistry at the negative electrode. V.D. conducted the operando XRD studies and S.H.V. characterized the material with HRTEM. L.F.N. together with all of the co-authors wrote the manuscript, and all authors contributed to the scientific discussion.

Corresponding author

Correspondence to Linda F. Nazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Table 1, Supplementary Notes 1–6, Supplementary Methods, Supplementary References. (PDF 2294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, D., Adams, B., Duffort, V. et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing