Design principles for electrolytes and interfaces for stable lithium-metal batteries

Abstract

The future of electrochemical energy storage hinges on the advancement of science and technology that enables rechargeable batteries that utilize reactive metals as anodes. With specific capacity more than ten times that of the LiC6 anode used in present-day lithium-ion batteries, cells based on Li-metal anodes are of particular interest. Effective strategies for stabilizing the anode in such cells are now understood to be a requirement for progress on exceptional storage technologies, including Li–S and Li–O2 batteries. Multiple challenges—parasitic reactions of Li-metal with liquid electrolytes, unstable and dendritic electrodeposition, and dendrite-induced short circuits—derailed early efforts to commercialize such lithium-metal batteries. Here we consider approaches for rationally designing electrolytes and Li-metal/electrolyte interfaces for stable, dendrite-free operation of lithium-metal batteries. On the basis of fundamental understanding of the failure modes of reactive metal anodes, we discuss the key variables that govern the stability of electrodeposition at the Li anode and propose a universal framework for designing stable electrolytes and interfaces for lithium-metal batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stages of dendrite growth on a planar Li metal anode.
Figure 2: Current density-scaled growth rate versus dendrite nucleate size.
Figure 3: Practiced approaches for suppressing Li dendrites.

References

  1. 1

    Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  Google Scholar 

  2. 2

    Fleury, V., Chazalviel, J.-N. & Rosso, M. Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. Phys. Rev. E 48, 1279–1295 (1993).

    Article  Google Scholar 

  3. 3

    Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).

    Article  Google Scholar 

  4. 4

    Sawada, Y., Dougherty, A. & Gollub, J. P. Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56, 1260–1263 (1986).

    Article  Google Scholar 

  5. 5

    Rosso, M., Chazalviel, J-N. & Chassaing, E. Calculation of the space charge in electrodeposition from a binary electrolyte. J. Electroanal. Chem. 587, 323–328 (2006).

    Article  Google Scholar 

  6. 6

    Lu, Y., Korf, K. S., Kambe, Y., Tu, Z. & Archer, L. A. Ionic-liquid–nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014).

    Article  Google Scholar 

  7. 7

    Aogaki, R. & Makino, T. Theory of powdered metal formation in electrochemistry — morphological instability in galvanostatic crystal growth under diffusion control. Electrochim. Acta 26, 1509–1517 (1981).

    Article  Google Scholar 

  8. 8

    Tikekar, M. D., Archer, L. A. & Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014).

    Article  Google Scholar 

  9. 9

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    Article  Google Scholar 

  10. 10

    Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).

    Article  Google Scholar 

  11. 11

    Ozhabes, Y., Gunceler, D. & Arias, T. A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. Preprint at http://arxiv.org/abs/1504.05799 (2015).

  12. 12

    Tikekar, M. D., Archer, L. A. & Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, E1600320 (2016).

    Article  Google Scholar 

  13. 13

    Tu, Z., Nath, P., Lu, Y., Tikekar, M. D. & Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015).

    Article  Google Scholar 

  14. 14

    Bates, J. B. et al. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56, 647–654 (1992).

    Article  Google Scholar 

  15. 15

    Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, 742–746 (2001).

    Article  Google Scholar 

  16. 16

    Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).

    Article  Google Scholar 

  17. 17

    De Jonghe, L. C., Feldman, L. & Millett, P. Some geometrical aspects of breakdown of sodium beta alumina. Mater. Res. Bull. 14, 589–595 (1979).

    Article  Google Scholar 

  18. 18

    Lu, Y. et al. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015).

    Article  Google Scholar 

  19. 19

    Song, J., Lee, H., Choo, M.-J., Park, J.-K. & Kim, H.-T. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015).

    Article  Google Scholar 

  20. 20

    Cheng, X. B. et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016).

    Article  Google Scholar 

  21. 21

    Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    Article  Google Scholar 

  22. 22

    Schaefer, J. L., Yanga, D. A. & Archer, L. A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013).

    Article  Google Scholar 

  23. 23

    Smith, D. M., Cheng, S., Wang, W., Bunning, T. J. & Li, C. Y. Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization. J. Power Sources 271, 597–603 (2014).

    Article  Google Scholar 

  24. 24

    Chen, Q., Geng, K. & Sieradzki, K. Prospects for dendrite-free cycling of Li metal batteries. J. Electrochem. Soc. 162, A2004–A2007 (2015).

    Article  Google Scholar 

  25. 25

    Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    Article  Google Scholar 

  26. 26

    Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    Article  Google Scholar 

  27. 27

    Lapp, R., Skaarup, S. & Hooper, A. Ionic conductivity of pure and doped Li3N. Solid State Ionics 11, 97–103 (1983).

    Article  Google Scholar 

  28. 28

    Tu, Z., Kambe, Y., Lu, Y. & Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014).

    Article  Google Scholar 

  29. 29

    Giles, J. R. M., Gray, F. M., Maccallum, J. R. & Vincent, C. A. Synthesis and characterization of ABA block copolymer-based polymer electrolytes. Polymer 28, 1977–1981 (1987).

    Article  Google Scholar 

  30. 30

    Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    Article  Google Scholar 

  31. 31

    Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015).

    Article  Google Scholar 

  32. 32

    Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

    Article  Google Scholar 

  33. 33

    Gurevitch, I. et al. Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013).

    Article  Google Scholar 

  34. 34

    Tung, S.-O., Ho, S., Yang, M., Zhang, R. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015).

    Article  Google Scholar 

  35. 35

    Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014).

    Article  Google Scholar 

  36. 36

    Qian, J. et. al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  37. 37

    Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015).

    Article  Google Scholar 

  38. 38

    Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  Google Scholar 

  39. 39

    Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2016).

    Article  Google Scholar 

  40. 40

    Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article  Google Scholar 

  41. 41

    Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).

    Article  Google Scholar 

  42. 42

    Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    Article  Google Scholar 

  43. 43

    Neudecker, B. J., Dudney, N. J. & Bates, J. B. “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).

    Article  Google Scholar 

  44. 44

    Sun, Y. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat. Energy 1, 15008 (2016).

    Article  Google Scholar 

  45. 45

    Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    Article  Google Scholar 

  46. 46

    Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    Article  Google Scholar 

  47. 47

    Williamson, M., Tromp, R., Vereecken, P., Hull, R. & Ross, F. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003).

    Article  Google Scholar 

  48. 48

    White, E. R. et al. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012).

    Article  Google Scholar 

  49. 49

    Han, J.-H., Khoo, E., Bai, P. & Bazant, M. Z. Over-limiting current and control of dendritic growth by surface conduction in nanopores. Sci. Rep. 4, 7056 (2014).

    Article  Google Scholar 

  50. 50

    Xu, S., Lu, Y., Wang, H., Abruna, H. D. & Archer, L. A. A rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes. J. Mater. Chem. A 2, 17723–17729 (2014).

    Article  Google Scholar 

  51. 51

    Al Sadat, W. I. & Archer, L. A. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation. Sci. Adv. 2, e1600968 (2016).

    Article  Google Scholar 

  52. 52

    Liu, Q.-C. et al. Artificial protection film on lithium metal anode toward long-cycle life lithium-oxygen batteries. Adv. Mater. 27, 5241–5247 (2015).

    Article  Google Scholar 

  53. 53

    Stark, J. K., Ding, Y. & Kohl, P. A. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium. J. Electrochem. Soc. 160, D337–D342 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation Award No. DMR-1609125 and by the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DESC0001086.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lynden A. Archer.

Ethics declarations

Competing interests

L.A.A. is a founder and holds a financial interest in NOHMs Technologies, a technology concern seeking to commercialize electrolytes and electrodes for high voltage Li-ion and high-energy Li's batteries.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tikekar, M., Choudhury, S., Tu, Z. et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy 1, 16114 (2016). https://doi.org/10.1038/nenergy.2016.114

Download citation

Further reading