Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast and reversible thermoresponsive polymer switching materials for safer batteries

A Publisher Correction to this article was published on 19 March 2024

This article has been updated

Abstract

Safety issues have been a long-standing obstacle impeding large-scale adoption of next-generation high-energy-density batteries. Materials solutions to battery safety management are limited by slow response and small operating voltage windows. Here we report a fast and reversible thermoresponsive polymer switching material that can be incorporated inside batteries to prevent thermal runaway. This material consists of electrochemically stable graphene-coated spiky nickel nanoparticles mixed in a polymer matrix with a high thermal expansion coefficient. The as-fabricated polymer composite films show high electrical conductivity of up to 50 S cm−1 at room temperature. Importantly, the conductivity decreases within one second by seven to eight orders of magnitude on reaching the transition temperature and spontaneously recovers at room temperature. Batteries with this self-regulating material built in the electrode can rapidly shut down under abnormal conditions such as overheating and shorting, and are able to resume their normal function without performance compromise or detrimental thermal runaway. Our approach offers 103–104 times higher sensitivity to temperature changes than previous switching devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of safe battery design.
Figure 2: Structure and composition of graphene-coated nano-spiky Ni and as-fabricated TRPS material.
Figure 3: Physical properties of TRPS film.
Figure 4: Battery performance.
Figure 5: COMSOL simulation of battery behaviour after nail shorting.

Similar content being viewed by others

Change history

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  ADS  PubMed  Google Scholar 

  2. Choi, N. S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012).

    Article  Google Scholar 

  3. Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  PubMed  Google Scholar 

  4. Lu, L., Han, X., Li, J., Hua, J. & Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013).

    Article  ADS  Google Scholar 

  5. Wang, Q. et al. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012).

    Article  ADS  Google Scholar 

  6. Finegan, D. P. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nature Commun. 6, 6924 (2015).

    Article  ADS  Google Scholar 

  7. Feng, X. M., Ai, X. P. & Yang, H. X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochem. Commun. 6, 1021–1024 (2004).

    Article  Google Scholar 

  8. Balakrishnan, P. G., Ramesh, R. & Prem Kumar, T. Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401–414 (2006).

    Article  ADS  Google Scholar 

  9. Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164, 351–364 (2007).

    Article  ADS  Google Scholar 

  10. Baginska, M. et al. Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv. Energy Mater. 2, 583–590 (2012).

    Article  Google Scholar 

  11. Choi, J.-A., Kim, S. H. & Kim, D.-W. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 195, 6192–6196 (2010).

    Article  ADS  Google Scholar 

  12. Jung, Y. S. et al. Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv. Energy Mater. 2, 1022–1027 (2012).

    Article  Google Scholar 

  13. Feng, J. K., Ai, X. P., Cao, Y. L. & Yang, H. X. Polytriphenylamine used as an electroactive separator material for overcharge protection of rechargeable lithium battery. J. Power Sources 161, 545–549 (2006).

    Article  ADS  Google Scholar 

  14. Li, S. L., Ai, X. P., Yang, H. X. & Cao, Y. L. A polytriphenylamine-modified separator with reversible overcharge protection for 3.6 V-class lithium-ion battery. J. Power Sources 189, 771–774 (2009).

    Article  ADS  Google Scholar 

  15. Zhang, H., Cao, Y., Yang, H., Lu, S. & Ai, X. A redox-active polythiophene-modified separator for safety control of lithium-ion batteries. J. Polym. Sci. B 51, 1487–1493 (2013).

    Article  Google Scholar 

  16. Hyung, Y. E., Vissers, D. R. & Amine, K. Flame-retardant additives for lithium-ion batteries. J. Power Sources 119–121, 383–387 (2003).

    Article  Google Scholar 

  17. Xiang, H. F., Xu, H. Y., Wang, Z. Z. & Chen, C. H. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. J. Power Sources 173, 562–564 (2007).

    Article  ADS  Google Scholar 

  18. Buhrmester, C. et al. Studies of aromatic redox shuttle additives for LiFePO4-based Li-ion cells. J. Electrochem. Soc. 152, A2390–A2399 (2005).

    Article  Google Scholar 

  19. Chen, Z., Qin, Y. & Amine, K. Redox shuttles for safer lithium-ion batteries. Electrochim. Acta 54, 5605–5613 (2009).

    Article  Google Scholar 

  20. Zhang, L., Zhang, Z., Wu, H. & Amine, K. Novel redox shuttle additive for high-voltage cathode materials. Energy Environ. Sci. 4, 2858–2862 (2011).

    Article  Google Scholar 

  21. Zhang, L., Zhang, Z., Redfern, P. C., Curtiss, L. A. & Amine, K. Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy Environ. Sci. 5, 8204–8207 (2012).

    Article  Google Scholar 

  22. Chen, R.-J., Wu, F., Li, L., Qiu, X.-P. & Chen, S. Binary molten salt electrolytes based on LiClO4 and 2-oxazolidinone. Acta Phys.-Chim. Sin. 23, 554–558 (2007).

    Article  Google Scholar 

  23. Xu, K., Zhang, S., Allen, J. L. & Jow, T. R. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. J. Electrochem. Soc. 149, A1079–A1082 (2002).

    Article  Google Scholar 

  24. Wong, D. H. C. et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 111, 3327–3331 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, X.-W., Wang, C., Appleby, A. J. & Little, F. E. Characteristics of lithium-ion-conducting composite polymer-glass secondary cell electrolytes. J. Power Sources 112, 209–215 (2002).

    Article  ADS  Google Scholar 

  26. Ghosh, A., Wang, C. & Kofinas, P. Block copolymer solid battery electrolyte with high Li-ion transference number. J. Electrochem. Soc. 157, A846–A849 (2010).

    Article  Google Scholar 

  27. Liu, G., Reinhout, M., Mainguy, B. & Baker, G. L. Synthesis, structure, and ionic conductivity of self-assembled amphiphilic poly(methacrylate) comb polymers. Macromolecules 39, 4726–4734 (2006).

    Article  ADS  Google Scholar 

  28. Liu, G., Reeder, C. L., Sun, X. & Kerr, J. B. Diffusion coefficients in trimethyleneoxide containing comb branch polymer electrolytes. Solid State Ion. 175, 781–783 (2004).

    Article  Google Scholar 

  29. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Mater. 12, 452–457 (2013).

    Article  ADS  Google Scholar 

  30. Li, J. et al. A positive-temperature-coefficient layer based on Ni-mixed poly(vinylidene fluoride) composites for LiFePO4 electrode. Int. J. Electrochem. Sci. 8, 5223–5231 (2013).

    Article  Google Scholar 

  31. Zhou, F., Zhao, X. & Dahn, J. R. Impact of Al or Mg substitution on the thermal Stability of Li1.05Mn1.95−zMzO4 (M = Al or Mg). J. Electrochem. Soc. 157, A798–A801 (2010).

    Article  Google Scholar 

  32. Xia, L., Li, S.-L., Ai, X.-P., Yang, H.-X. & Cao, Y.-L. Temperature-sensitive cathode materials for safer lithium-ion batteries. Energy Environ. Sci. 4, 2845–2848 (2011).

    Article  Google Scholar 

  33. Bloor, D., Graham, A., Williams, E. J., Laughlin, P. J. & Lussey, D. Metal–polymer composite with nanostructured filler particles and amplified physical properties. Appl. Phys. Lett. 88, 102103 (2006).

    Article  ADS  Google Scholar 

  34. Bartenev, G. M., Remizova, A. A., Kuleshov, I. V. & Martynov, M. A. Volume expansion of polyethylene with various degrees of crystallinity over a wide range of temperatures. Polym. Sci. USSR 15, 2808–2813 (1973).

    Article  Google Scholar 

  35. Yang, G. F., Song, K. Y. & Joo, S. K. A metal foam as a current collector for high power and high capacity lithium iron phosphate batteries. J. Mater. Chem. A 2, 19648–19652 (2014).

    Article  Google Scholar 

  36. Veith, G. M. & Dudney, N. J. Current collectors for rechargeable Li-air batteries. J. Electrochem. Soc. 158, A658–A663 (2011).

    Article  Google Scholar 

  37. Nan, C. W., Shen, Y. & Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010).

    Article  ADS  Google Scholar 

  38. Alvarez, M. P., Poblete, V. H., Pilleux, M. E. & Fuenzalida, V. M. Submicron copper-low-density polyethylene conducting composite-structural electrical and percolation threshold. J. Appl. Polym. Sci. 99, 3005–3008 (2006).

    Article  Google Scholar 

  39. Xia, L., Zhu, L., Zhang, H. & Ai, X. A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries. Chin. Sci. Bull. 57, 4205–4209 (2012).

    Article  Google Scholar 

  40. Chen, R. et al. Positive temperature coefficient effect of polymer-carbon filler composites under self-heating evaluated quantitatively in terms of potential barrier height and width associated with tunnel current. Polymer 53, 5197–5207 (2012).

    Article  Google Scholar 

  41. Wei, D., Zhao, T. & Xiao, S. Y. Resistivity-volume expansion characteristics of carbon black-loaded polyethylene. J. Appl. Polym. Sci. 77, 53–58 (2000).

    Article  Google Scholar 

  42. Kono, A. et al. Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites. Polymer 53, 1760–1764 (2012).

    Article  Google Scholar 

  43. Li, D., Yang, K., Chen, S. & Wu, F. Thermal behavior of overcharged nickel/metal hydride batteries. J. Power Sources 184, 622–626 (2008).

    Article  ADS  Google Scholar 

  44. Kise, M. et al. Development of new safe electrode for lithium rechargeable battery. J. Power Sources 146, 775–778 (2005).

    Article  ADS  Google Scholar 

  45. Zhong, H., Kong, C., Zhan, H., Zhan, C. & Zhou, Y. Safe positive temperature coefficient composite cathode for lithium ion battery. J. Power Sources 216, 273–280 (2012).

    Article  ADS  Google Scholar 

  46. Yoon, S.-M. et al. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6, 6803–6811 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC02-76-SF00515 and by the Precourt Institute for Energy at Stanford University. We thank K. Yan for discussions and J. Tok for proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.B., Y.C. and Z.C. conceived and designed the experiment. Z.C. carried out materials fabrication, characterization and testing. P.-C.H. conducted COMSOL simulations. J.L. performed DSC measurements. Y.L. conducted the graphene coating for nano-spiky nickel particles. J.W.F.T. and N.L. did the XPS and Raman characterization, respectively. C.W., S.C.A. and J.L. provided constructive advice for the experiment and figure preparation. Z.C. wrote the first draft. Z.B. and Y.C. revised the manuscript. All authors made comments on the paper.

Corresponding authors

Correspondence to Yi Cui or Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–16, Supplementary Table 1 and Supplementary References. (PDF 1548 kb)

Supplementary Video 1

Demonstration of the fast thermal switching behavior of TRPS devices made by PE/GrNi. (MOV 7458 kb)

Supplementary Video 2

Demonstration of slicing properties of TRPS film. (MOV 25386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Hsu, PC., Lopez, J. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat Energy 1, 15009 (2016). https://doi.org/10.1038/nenergy.2015.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2015.9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing