High-capacity battery cathode prelithiation to offset initial lithium loss



Loss of lithium in the initial cycles appreciably reduces the energy density of lithium-ion batteries. Anode prelithiation is a common approach to address the problem, although it faces the issues of high chemical reactivity and instability in ambient and battery processing conditions. Here we report a facile cathode prelithiation method that offers high prelithiation efficacy and good compatibility with existing lithium-ion battery technologies. We fabricate cathode additives consisting of nanoscale mixtures of transition metals and lithium oxide that are obtained by conversion reactions of metal oxide and lithium. These nanocomposites afford a high theoretical prelithiation capacity (typically up to 800 mAh g−1, 2,700 mAh cm−3) during charging. We demonstrate that in a full-cell configuration, the LiFePO4 electrode with a 4.8% Co/Li2O additive shows 11% higher overall capacity than that of the pristine LiFePO4 electrode. The use of the cathode additives provides an effective route to compensate the large initial lithium loss of high-capacity anode materials and improves the electrochemical performance of existing lithium-ion batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of M/Li2O composite cathode additives for a Li-ion battery.
Figure 2: Fabrication and electrochemical characteristics of the N-Co/N-Li2O composite.
Figure 3: Structure and evolution of the N-Co/N-Li2O composite on the Li-extraction process.
Figure 4: Generalization to other N-M/N-Li2O composites.


  1. 1

    Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  2. 2

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    Article  Google Scholar 

  3. 3

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article  Google Scholar 

  4. 4

    Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  Google Scholar 

  5. 5

    Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  6. 6

    Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  Google Scholar 

  7. 7

    Zaghib, K., Nadeau, G. & Kinoshita, K. Effect of graphite particle size on irreversible capacity loss. J. Electrochem. Soc. 147, 2110–2115 (2000).

    Article  Google Scholar 

  8. 8

    Aurbach, D. et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. Graphite electrodes. J. Electrochem. Soc. 142, 2882–2890 (1995).

    Article  Google Scholar 

  9. 9

    Arakawa, M. & Yamaki, J.-I. The cathodic decomposition of propylene carbonate in lithium batteries. J. Electroanal. Chem. Interfacial Electrochem. 219, 273–280 (1987).

    Article  Google Scholar 

  10. 10

    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  Google Scholar 

  11. 11

    Matsumura, Y., Wang, S. & Mondori, J. Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J. Electrochem. Soc. 142, 2914–2918 (1995).

    Article  Google Scholar 

  12. 12

    Wang, D. Y., Sinha, N. N., Petibon, R., Burns, J. C. & Dahn, J. R. A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. J. Power Sources 251, 311–318 (2014).

    Article  Google Scholar 

  13. 13

    Hassoun, J., Lee, K.-S., Sun, Y.-K. & Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 133, 3139–3143 (2011).

    Article  Google Scholar 

  14. 14

    Liu, N., Hu, L. B., McDowell, M. T., Jackson, A. & Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487–6493 (2011).

    Article  Google Scholar 

  15. 15

    Jarvis, C. R., Lain, M. J., Yakovleva, M. V. & Gao, Y. A prelithiated carbon anode for lithium-ion battery applications. J. Power Sources 162, 800–802 (2006).

    Article  Google Scholar 

  16. 16

    Wang, Z. H. et al. Application of stabilized lithium metal powder (SLMP®) in graphite anode—A high efficient prelithiation method for lithium-ion batteries. J. Power Sources 260, 57–61 (2014).

    Article  Google Scholar 

  17. 17

    Zhao, J. et al. Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nature Commun. 5, 5088 (2014).

    Article  Google Scholar 

  18. 18

    Shanmukaraj, D. et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries. Electrochem. Commun. 12, 1344–1347 (2010).

    Article  Google Scholar 

  19. 19

    Singh, G. et al. An approach to overcome first cycle irreversible capacity in P2-Na2∕3[Fe1∕2Mn1∕2]O2 . Electrochem. Commun. 37, 61–63 (2013).

    Article  Google Scholar 

  20. 20

    Kim, M. G. & Cho, J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell. J. Mater. Chem. 18, 5880–5887 (2008).

    Article  Google Scholar 

  21. 21

    Noh, M. & Cho, J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material. J. Electrochem. Soc. 159, A1329–A1334 (2012).

    Article  Google Scholar 

  22. 22

    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  Google Scholar 

  23. 23

    Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).

    Article  Google Scholar 

  24. 24

    Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).

    Article  Google Scholar 

  25. 25

    Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).

    Article  Google Scholar 

  26. 26

    Lou, X. W., Deng, D., Lee, J. Y., Feng, J. & Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258–262 (2008).

    Article  Google Scholar 

  27. 27

    Wang, H. L. et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010).

    Article  Google Scholar 

  28. 28

    Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004).

    Article  Google Scholar 

  29. 29

    Sun, J. P. et al. Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries. Solid State Ion. 179, 2390–2395 (2008).

    Article  Google Scholar 

  30. 30

    Wu, Z. Z. et al. Prelithiation activates Li(Ni0.5Mn0.3Co0.2)O2 for high capacity and excellent cycling stability. Nano Lett. 15, 5590–5596 (2015).

    Article  Google Scholar 

  31. 31

    Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003).

    Article  Google Scholar 

  32. 32

    Hu, Y.-S. et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Mater. 5, 713–717 (2006).

    Article  Google Scholar 

  33. 33

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  Google Scholar 

  34. 34

    McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).

    Article  Google Scholar 

  35. 35

    Zheng, G. Y., Yang, Y., Cha, J. J., Hong, S. S. & Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011).

    Article  Google Scholar 

Download references


Y.C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research (BMR) Program. S. Lee and G. Zheng are acknowledged for discussions and help.

Author information




Y.S. and Y.C. conceived and designed the experiments. Y.S. performed materials fabrication, characterization and electrochemical measurements. H.-W.L. conducted in situ TEM and HR-TEM characterization. Y.S. and Y.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–18 and Supplementary References. (PDF 1454 kb)

Supplementary Video 1

The in situ TEM results show that the N-Co/N-Li2O particles continuously shrink upon the delithiation process and less than 1/2 of the initial volume of a particle aggregate is retained after the delithiation. (MP4 12780 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Lee, HW., Seh, Z. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat Energy 1, 15008 (2016). https://doi.org/10.1038/nenergy.2015.8

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing