Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US

Abstract

Sustainable transportation biofuels may require considerable changes in land use to meet mandated targets. Understanding the possible impact of different policies on land use and greenhouse gas emissions has typically proceeded by exploring either ecosystem or economic modelling. Here we integrate such models to assess the potential for the US Renewable Fuel Standard to reduce greenhouse gas emissions from the transportation sector through the use of cellulosic biofuels. We find that 2022 US emissions are decreased by 7.0 ± 2.5% largely through gasoline displacement and soil carbon storage by perennial grasses. If the Renewable Fuel Standard is accompanied by a cellulosic biofuel tax credit, these emissions could be reduced by 12.3 ± 3.4%. Our integrated approach indicates that transitioning to cellulosic biofuels can meet a 32-billion-gallon Renewable Fuel Standard target with negligible effects on food crop production, while reducing fossil fuel use and greenhouse gas emissions. However, emissions savings are lower than previous estimates that did not account for economic constraints.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Integrated modelling framework of combined ecosystem and economic modelling.
Figure 2: Sources of land converted to energy-only crops and GHG contributions.
Figure 3: Land allocation of perennial grasses and corn stover for the biofuel policy scenarios.
Figure 4: Total US 2022 projected GHG balance estimates for each scenario.

References

  1. 1

    Chen, X., Huang, H. & Khanna, M. Land-use and greenhouse gas implications of biofuels: Role of technology and policy. Clim. Change Econ. 3, 1250013 (2012).

    Article  Google Scholar 

  2. 2

    Khanna, M., Onal, H., Chen, X. G. & Huang, H. X. Meeting biofuels targets: Implications for land use, greenhouse gas emissions, and nitrogen use in Illinois. Handbook Bioenerg. Econ. Policy 33, 287–305 (2010).

    Article  Google Scholar 

  3. 3

    Beach, R. H., Zhang, Y. W. & McCarl, B. A. Modeling bioenergy, land use, and GHG emissions with FASOMGHG: Model overview and analysis of storage cost implications. Clim. Change Econ. 3, 1250012 (2012).

    Article  Google Scholar 

  4. 4

    Gelfand, I. et al. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, 514–517 (2013).

    Article  Google Scholar 

  5. 5

    Kang, S. J. et al. Global simulation of bioenergy crop productivity: Analytical framework and case study for switchgrass. Glob. Change Biol. Bioenerg. 6, 14–25 (2014).

    Article  Google Scholar 

  6. 6

    Miguez, F. E., Maughan, M., Bollero, G. A. & Long, S. P. Modeling spatial and dynamic variation in growth, yield, and yield stability of the bioenergy crops Miscanthus x giganteus and Panicum virgatum across the conterminous United States. Glob. Change Biol. Bioenerg. 4, 509–520 (2012).

    Article  Google Scholar 

  7. 7

    Wang, D. A. N., Lebauer, D. S. & Dietze, M. C. A quantitative review comparing the yield of switchgrass in monocultures and mixtures in relation to climate and management factors. Glob. Change Biol. Bioenerg. 2, 16–25 (2010).

    Article  Google Scholar 

  8. 8

    Lesur, C. et al. Modeling long-term yield trends of Miscanthus x giganteus using experimental data from across Europe. Field Crops Res. 149, 252–260 (2013).

    Article  Google Scholar 

  9. 9

    Mishra, U., Torn, M. S. & Fingerman, K. Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon. Glob. Change Biol. Bioenerg. 5, 391–399 (2013).

    Article  Google Scholar 

  10. 10

    Davis, S. C. et al. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front. Ecol. Environ. 10, 69–74 (2012).

    Article  Google Scholar 

  11. 11

    Davis, S. C. et al. Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus x giganteus agro-ecosystem. Ecosystems 13, 144–156 (2010).

    Article  Google Scholar 

  12. 12

    Heaton, E. A., Dohleman, F. G. & Long, S. P. Seasonal nitrogen dynamics of Miscanthus x giganteus and Panicum virgatum. Glob. Change Biol. Bioenerg. 1, 297–307 (2009).

    Article  Google Scholar 

  13. 13

    Anderson-Teixeira, K. J., Davis, S. C., Masters, M. D. & DeLucia, E. H. Changes in soil organic carbon under biofuel crops. Glob. Change Biol. Bioenerg. 1, 75–96 (2009).

    Article  Google Scholar 

  14. 14

    Chen, X., Huang, H., Khanna, M. & Önal, H. Alternative transportation fuel standards: Welfare effects and climate benefits. J. Environ. Econ. Manage. 67, 241–257 (2014).

    Article  Google Scholar 

  15. 15

    Georgescu, M., Lobell, D. B. & Field, C. B. Direct climate effects of perennial bioenergy crops in the United States. Proc. Natl Acad. Sci. USA 108, 4307–4312 (2011).

    Article  Google Scholar 

  16. 16

    Del Grosso, S. J. et al. Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through Gracenet to Address Our Changing Climate 241–250 (Elsevier, 2012).

    Google Scholar 

  17. 17

    Parton, W. J., Hartman, M., Ojima, D. & Schimel, D. DAYCENT and its land surface submodel: Description and testing. Glob. Planet. Change 19, 35–48 (1998).

    Article  Google Scholar 

  18. 18

    Khanna, M., Dhungana, B. & Clifton-Brown, J. Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenerg. 32, 482–493 (2008).

    Article  Google Scholar 

  19. 19

    Drabik, D. & DeGorter, H. Biofuel policies and carbon leakage. AgBioForum 14, 104–110 (2011).

    Google Scholar 

  20. 20

    Rajagopal, D., Hochman, G. & Zilberman, D. Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies. Energ. Policy 39, 228–233 (2011).

    Article  Google Scholar 

  21. 21

    Thompson, W., Whistance, J. & Meyer, S. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions. Energ. Policy 39, 5509–5518 (2011).

    Article  Google Scholar 

  22. 22

    Chen, X. & Khanna, M. The market-mediated effects of low carbon fuel policies. AgBioForum 15, 89–105 (2012).

    Google Scholar 

  23. 23

    Rajagopal, D. The fuel market effects of biofuel policies and implications for regulations based on lifecycle emissions. Environ. Res. Lett. 8, 024013 (2013).

    Article  Google Scholar 

  24. 24

    Bento, A. M., Klotz, R. & Landry, J. R. Are there Carbon Savings from US Biofuel Policies? Accounting for Leakage in Land and Fuel Markets Proceedings paper: 2011 (Social Science Research Network, 2011); http://purl.umn.edu/104008

    Google Scholar 

  25. 25

    Del Grosso, S. J., Mosier, A. R., Parton, W. J. & Ojima, D. S. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res. 83, 9–24 (2005).

    Article  Google Scholar 

  26. 26

    Campbell, E. E. et al. Assessing the soil carbon, biomass production, and nitrous oxide emission impact of Corn Stover Management for bioenergy feedstock production using DAYCENT. Bioenerg. Res. 7, 491–502 (2014).

    Article  Google Scholar 

  27. 27

    Hudiburg, T. W., Davis, S. C., Parton, W. & DeLucia, E. H. Bioenergy crop greenhouse gas mitigation potential under a range of management practices. Glob. Change Biol. Bioenerg. 7, 366–374 (2015).

    Article  Google Scholar 

  28. 28

    Tyner, W. E. Induced land use emissions due to first and second generation biofuels and uncertainty in land use emission factors. Econ. Res. Int. 2013, 1–12 (2013).

    Google Scholar 

  29. 29

    Dwivedi, P. et al. Cost of abating greenhouse gas emissions with cellulosic ethanol. Environ. Sci. Technol. 49, 2512–2522 (2015).

    Article  Google Scholar 

  30. 30

    Liska, A. J. et al. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nature Clim. Change 4, 398–401 (2014).

    Article  Google Scholar 

  31. 31

    DeLucia, E. H. et al. The theoretical limit to plant productivity. Environ. Sci. Technol. 48, 9471–9477 (2014).

    Article  Google Scholar 

  32. 32

    Anderson-Teixeira, K. J. et al. Altered belowground carbon cycling following land-use change to perennial bioenergy crops. Ecosystems 10, 508–520 (2013).

    Article  Google Scholar 

  33. 33

    Zeri, M. et al. Carbon exchange by establishing biofuel crops in Central Illinois. Agric. Ecosys. Environ. 144, 319–329 (2011).

    Article  Google Scholar 

  34. 34

    Dondini, M., Hastings, A., Saiz, G., Jones, M. B. & Smith, P. The potential of Miscanthus to sequester carbon in soils: Comparing field measurements in Carlow, Ireland to model predictions. Glob. Change Biol. Bioenerg. 1, 413–425 (2009).

    Article  Google Scholar 

  35. 35

    Felten, D., Froba, N., Fries, J. & Emmerling, C. Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany. Renew. Energ. 55, 160–174 (2013).

    Article  Google Scholar 

  36. 36

    Liebig, M. A., Schmer, M. R., Vogel, K. P. & Mitchell, R. B. Soil carbon storage by switchgrass grown for bioenergy. Bioenerg. Res. 1, 215–222 (2008).

    Article  Google Scholar 

  37. 37

    Williams, C. A., Collatz, G. J., Masek, J. & Goward, S. N. Carbon consequences of forest disturbance and recovery across the conterminous United States. Glob. Biogeochem. Cycles 26, GB1005 (2012).

    Google Scholar 

  38. 38

    Lapan, H. & Moschini, G. Second-best biofuel policies and the welfare effects of quantity mandates and subsidies. J. Environ. Econ. Manage. 63, 224–241 (2012).

    Article  Google Scholar 

  39. 39

    Cui, J., Lapan, H., Moschini, G. & Cooper, J. Welfare impacts of alternative biofuel and energy policies. Am. J. Agric. Econ. 93, 1235–1256 (2011).

    Article  Google Scholar 

  40. 40

    Moschini, G., Lapan, H., Cui, J. & Cooper, J. Assessing the welfare effects of US biofuel policies. AgBioForum 13, 370–374 (2011).

    Google Scholar 

  41. 41

    Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  Google Scholar 

  42. 42

    Searchinger, T., Edwards, R., Mulligan, D., Heimlich, R. & Plevin, R. Do biofuel policies seek to cut emissions by cutting food? Science 347, 1420–1422 (2015).

    Article  Google Scholar 

  43. 43

    Chen, X. G. & Onal, H. Modeling agricultural supply response using mathematical programming and crop mixes. Am. J. Agric. Econ. 94, 674–686 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from the North Central Regional Sun Grant Center at South Dakota State University through a grant provided by the US Department of Energy Office of Biomass Programs under award number DE-FG36-08GO88073, with additional support provided by the Energy Biosciences Institute, University of Illinois and University of California, Berkeley.

Author information

Affiliations

Authors

Contributions

T.W.H., E.H.D., W.W. and M.K. designed and implemented the study with help from P.D., S.P.L., W.J.P. and M.H. T.W.H., W.W., E.H.D. and M.K. co-wrote the paper and W.J.P. and M.H. contributed to parts of the analysis. S.P.L. provided essential data and methods for the analysis and valuable comments on the manuscript.

Corresponding author

Correspondence to Evan H. DeLucia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hudiburg, T., Wang, W., Khanna, M. et al. Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US. Nat Energy 1, 15005 (2016). https://doi.org/10.1038/nenergy.2015.5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing