Efficient silicon solar cells with dopant-free asymmetric heterocontacts


A salient characteristic of solar cells is their ability to subject photo-generated electrons and holes to pathways of asymmetrical conductivity—‘assisting’ them towards their respective contacts. All commercially available crystalline silicon (c-Si) solar cells achieve this by making use of doping in either near-surface regions or overlying silicon-based films. Despite being commonplace, this approach is hindered by several optoelectronic losses and technological limitations specific to doped silicon. A progressive approach to circumvent these issues involves the replacement of doped-silicon contacts with alternative materials which can also form ‘carrier-selective’ interfaces on c-Si. Here we successfully develop and implement dopant-free electron and hole carrier-selective heterocontacts using alkali metal fluorides and metal oxides, respectively, in combination with passivating intrinsic amorphous silicon interlayers, resulting in power conversion efficiencies approaching 20%. Furthermore, the simplified architectures inherent to this approach allow cell fabrication in only seven low-temperature (≤200 C), lithography-free steps. This is a marked improvement on conventional doped-silicon high-efficiency processes, and highlights potential improvements on both sides of the cost-to-performance ratio for c-Si photovoltaics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Conceptual structure of the DASH solar cell.
Figure 2: Optoelectronic properties of carrier-selective layers.
Figure 3: Contact-level analysis of electron-selective contacts.
Figure 4: DASH cell level results.


  1. 1

    Baker-Finch, S. C., McIntosh, K. R., Yan, D., Fong, K. C. & Kho, T. C. Near-infrared free carrier absorption in heavily doped silicon. J. Appl. Phys. 116, 063106 (2014).

    Article  Google Scholar 

  2. 2

    Richter, A., Glunz, S. W., Werner, F., Schmidt, J. & Cuevas, A. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012).

    Article  Google Scholar 

  3. 3

    Cuevas, A., Basore, P. A., Giroult-Matlakowski, G. & Dubois, C. Surface recombination velocity of highly doped n-type silicon. J. Appl. Phys. 80, 3370–3375 (1996).

    Article  Google Scholar 

  4. 4

    Zhao, J., Wang, A., Green, M. A. & Ferrazza, F. 19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991–1993 (1998).

    Article  Google Scholar 

  5. 5

    Goodrich, A. et al. A wafer-based monocrystalline silicon photovoltaics road map: utilizing known technology improvement opportunities for further reductions in manufacturing costs. Sol. Energy Mater. Sol. Cells 114, 110–135 (2013).

    Article  Google Scholar 

  6. 6

    Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711–716 (1984).

    Article  Google Scholar 

  7. 7

    Wurfel, U., Cuevas, A. & Wurfel, P. Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461–469 (2015).

    Article  Google Scholar 

  8. 8

    Masuko, K. et al. Achievement of more than 25%; conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

    Article  Google Scholar 

  9. 9

    Taguchi, M. et al. 24.7%; record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

    Article  Google Scholar 

  10. 10

    Heng, J. B. et al. >23% high-efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines. IEEE J. Photovolt. 5, 82–86 (2015).

    Article  Google Scholar 

  11. 11

    Feldmann, F. et al. Efficient carrier-selective p- and n-contacts for Si solar cells. Sol. Energy Mater. Sol. Cells 131, 100–104 (2014).

    Article  Google Scholar 

  12. 12

    Holman, Z. C. et al. Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7–15 (2012).

    Article  Google Scholar 

  13. 13

    Fujiwara, H. & Kondo, M. Effects of a-Si:H layer thicknesses on the performance of a-Si:H/c-Si heterojunction solar cells. J. Appl. Phys. 101, 054516 (2007).

    Article  Google Scholar 

  14. 14

    de Nicolás, S. M., Muñoz, D., Ozanne, A. S., Nguyen, N. & Ribeyron, P. J. Proc. SiliconPV 2011 Conf. 1st Int. Conf. Cryst. Silicon Photovolt. Vol. 8, 226–231 (2011).

    Google Scholar 

  15. 15

    Yang, J.-H., Kang, S. J., Hong, Y. & Lim, K. S. Doping-free intrinsic amorphous silicon thin-film solar cell having a simple structure of Glass/SnO2/MoO3/i-a-Si/LiF/Al. IEEE Electron Device Lett. 35, 96–98 (2014).

    Article  Google Scholar 

  16. 16

    Avasthi, S. et al. Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl. Phys. Lett. 102, 203901 (2013).

    Article  Google Scholar 

  17. 17

    Battaglia, C. et al. Hole selective MoOx contact for silicon solar cells. Nano Lett. 14, 967–971 (2014).

    Article  Google Scholar 

  18. 18

    Bullock, J., Cuevas, A., Allen, T. & Battaglia, C. Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105, 232109 (2014).

    Article  Google Scholar 

  19. 19

    Bivour, M., Temmler, J., Steinkemper, H. & Hermle, M. Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 142, 34–41 (2015).

    Article  Google Scholar 

  20. 20

    Zielke, D., Pazidis, A., Werner, F. & Schmidt, J. Organic-silicon heterojunction solar cells on n-type silicon wafers: the BackPEDOT concept. Sol. Energy Mater. Sol. Cells 131, 110–116 (2014).

    Article  Google Scholar 

  21. 21

    Yu, P. et al. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 7, 10780–10787 (2013).

    Article  Google Scholar 

  22. 22

    Shen, X., Sun, B., Liu, D. & Lee, S.-T. Hybrid heterojunction solar cell based on organic–inorganic silicon nanowire array architecture. J. Am. Chem. Soc. 133, 19408–19415 (2011).

    Article  Google Scholar 

  23. 23

    Hezel, R. Recent progress in MIS solar cells. Prog. Photovolt. Res. Appl. 5, 109–120 (1997).

    Article  Google Scholar 

  24. 24

    Ponpon, J. P. & Siffert, P. Open circuit voltage of MIS silicon solar cells. J. Appl. Phys. 47, 3248–3251 (1976).

    Article  Google Scholar 

  25. 25

    Singh, R., Green, M. A. & Rajkanan, K. Review of conductor–insulator–semiconductor (CIS) solar cells. Sol. Cells 3, 95–148 (1981).

    Article  Google Scholar 

  26. 26

    Chen, L.-M., Xu, Z., Hong, Z. & Yang, Y. Interface investigation and engineering—achieving high performance polymer photovoltaic devices. J. Mater. Chem. 20, 2575–2598 (2010).

    Article  Google Scholar 

  27. 27

    Yin, X. et al. 19.2% efficient InP heterojunction solar cell with electron-selective TiO2 contact. ACS Photon. 1, 1245–1250 (2014).

    Article  Google Scholar 

  28. 28

    Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  Google Scholar 

  29. 29

    Liu, R., Lee, S.-T. & Sun, B. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 26, 6007–6012 (2014).

    Article  Google Scholar 

  30. 30

    Nagamatsu, K. A. et al. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell. Appl. Phys. Lett. 106, 123906 (2015).

    Article  Google Scholar 

  31. 31

    Zhang, Y. et al. High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy Environ. Sci. 8, 297–302 (2015).

    Article  Google Scholar 

  32. 32

    Zhang, Y., Liu, R., Lee, S.-T. & Sun, B. The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells. Appl. Phys. Lett. 104, 083514 (2014).

    Article  Google Scholar 

  33. 33

    Battaglia, C. et al. Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104, 113902 (2014).

    Article  Google Scholar 

  34. 34

    Geissbühler, J. et al. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107, 081601 (2015).

    Article  Google Scholar 

  35. 35

    Li, Y. et al. Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes. Appl. Phys. Lett. 90, 012119 (2007).

    Article  Google Scholar 

  36. 36

    Ganzorig, C., Suga, K. & Fujihira, M. Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Mater. Sci. Eng. B 85, 140–143 (2001).

    Article  Google Scholar 

  37. 37

    Helander, M. G., Wang, Z. B., Mordoukhovski, L. & Lu, Z. H. Comparison of Alq3/alkali-metal fluoride/Al cathodes for organic electroluminescent devices. J. Appl. Phys. 104, 094510 (2008).

    Article  Google Scholar 

  38. 38

    Hung, L. S., Tang, C. W. & Mason, M. G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152–154 (1997).

    Article  Google Scholar 

  39. 39

    Descoeudres, A. et al. >21%; efficient silicon heterojunction solar cells on n- and p-type wafers compared. IEEE J. Photovolt. 3, 83–89 (2013).

    Article  Google Scholar 

  40. 40

    Bullock, J. et al. Proof-of-concept p-type silicon solar cells with molybdenum oxide local rear contacts. IEEE J. Photovolt. 5, 1591–1594 (2015).

    Article  Google Scholar 

  41. 41

    Kim, S. et al. Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells. Adv. Mater. Charact. Tech. Sol. Cells 178, 660–664 (2013).

    Google Scholar 

  42. 42

    Schroder, D. K. Semiconductor Material and Device Characterization (John Wiley, 2006).

    Google Scholar 

  43. 43

    Gogolin, R. et al. Analysis of series resistance losses in a-Si:H/c-Si heterojunction solar cells. IEEE J. Photovolt. 4, 1169–1176 (2014).

    Article  Google Scholar 

  44. 44

    Feldmann, F., Bivour, M., Reichel, C., Hermle, M. & Glunz, S. W. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).

    Article  Google Scholar 

  45. 45

    Franklin, E. et al. Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell. Prog. Photovolt. Res. Appl. http://dx.doi.org/10.1002/pip.2556 (2014).

  46. 46

    Demaurex, B. et al. Atomic-layer-deposited transparent electrodes for silicon heterojunction solar cells. IEEE J. Photovolt. 4, 1387–1396 (2014).

    Article  Google Scholar 

  47. 47

    Morales-Masis, M., De Nicolas, S. M., Holovsky, J., De Wolf, S. & Ballif, C. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells. IEEE J. Photovolt. 5, 1340–1347 (2015).

    Article  Google Scholar 

  48. 48

    Dupuis, J. et al. Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE 003183–003186 (IEEE, 2012); http://dx.doi.org/10.1109/PVSC.2012.6318254

    Google Scholar 

  49. 49

    Briggs, D. & Seah, P. Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy 635–638 (Wiley, 1990).

    Google Scholar 

  50. 50

    Scanlon, D. O. et al. Theoretical and experimental study of the electronic structures of MoO3 and MoO2 . J. Phys. Chem. C 114, 4636–4645 (2010).

    Article  Google Scholar 

  51. 51

    Hamrin, K., Johansson, G., Gelius, U., Nordling, C. & Siegbahn, K. Valence bands and core levels of the isoelectronic series LiF, BeO, BN, and graphite studied by ESCA. Phys. Scr. 1, 277–280 (1970).

    Article  Google Scholar 

Download references


We would like to thank P. Frischmann for his assistance with IV measurements and A. Fell for his suggestions regarding the simulations. Device design, fabrication and characterization were funded by the Bay Area Photovoltaics Consortium (BAPVC). Materials characterization was supported by the Electronic Materials Programs, funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02- 05CH11231. XPS characterization was performed at the Joint Center for Artificial Photosynthesis, supported through the Office of Science of the US Department of Energy under Award Number DE-SC0004993. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (Contract No. DE-AC02-05CH11231). Work at EPFL was supported by the Office fedéral de l’ énergie (OFEN). Work at the ANU was supported by the Australian Renewable Energy Agency (ARENA). The authors would like to thank the CSEM PV-center for wafer preparation and device metallization.

Author information




J.B. and A.J. conceived the idea. J.B. and J.G. carried out the device fabrication, electrical characterization and analysis. A.J.O., T.A. and T.C. assisted with device fabrication. M.H. and C.M.S.-F., assisted with materials characterization. H.O. and E.W.S. assisted with mask fabrication. A.C., S.D.W. and C.B. discussed the results. J.B. wrote the paper and all other authors provided feedback.

Corresponding author

Correspondence to Ali Javey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Notes 1-4, Supplementary Tables 1-3, Supplementary Figures 1-4, Supplementary References. (PDF 911 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bullock, J., Hettick, M., Geissbühler, J. et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat Energy 1, 15031 (2016). https://doi.org/10.1038/nenergy.2015.31

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing