Climate change mitigation requires gigatonne-scale CO2 removal technologies, yet few examples exist beyond niche markets. The flexibility of thermochemical conversion of biomass and fossil energy, coupled with carbon capture and storage, offers a route to commercializing carbon-negative energy.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
Nature Communications Open Access 28 May 2019
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (The National Academies Press, 2015).
Sanchez, D. L., Nelson, J. H., Johnston, J., Mileva, A. & Kammen, D. M. Nature Clim. Change 5, 230–234 (2015).
Fuss, S. et al. Nature Clim. Change 4, 850–853 (2014).
Finley, R. J. Greenhouse Gases Sci. Technol. 4, 571–579 (2014).
Carroll, A. & Somerville, C. Annu. Rev. Plant Biol. 60, 165–182 (2009).
Liu, G., Larson, E. D., Williams, R. H., Kreutz, T. G. & Guo, X. Energy Fuels 25, 415–437 (2011).
Boerrigter, H. & van der Drift, A. Biosyngas: Description of R&D Trajectory Necessary to Reach Large-scale Implementation of Renewable Syngas from Biomass (Energy research Centre of the Netherlands, 2004); http://go.nature.com/TRoR9k
Floudas, C. A., Elia, J. A. & Baliban, R. C. Comput. Chem. Eng. 41, 24–51 (2012).
Liu, G., Larson, E. D., Williams, R. H. & Guo, X. Energy Fuels 29, 1845–1859 (2015).
Agrawal, R., Singh, N. R., Ribeiro, F. H. & Delgass, W. N. Proc. Natl Acad. Sci. USA 104, 4828–4833 (2007).
Greenhouse Gas Reductions in the Power Industry Using Domestic Coal and Biomass: Volume 1: IGCC (National Energy Technology Laboratory, 2012).
Milne, J. L. & Field, C. B. Assessment Report from the GCEP Workshop on Energy Supply with Negative Carbon Emissions (GCEP, 2012); http://go.nature.com/FhfDS4
Trancik, J. E. Environ. Res. Lett. 1, 014009 (2006).
Damen, K. et al. Energy Procedia 4, 1214–1221 (2011).
Scott, V., Haszeldine, R. S., Tett, S. F. B. & Oschlies, A. Nature Clim. Change 5, 419–423 (2015).
Sathaye, K. J., Hesse, M. A., Cassidy, M. & Stockli, D. F. Proc. Natl Acad. Sci. USA 111, 15332–15337 (2014).
Lomax, G., Workman, M., Lenton, T. & Shah, N. Energy Policy 78, 125–136 (2015).
Scott, V., Gilfillan, S., Markusson, N., Chalmers, H. & Haszeldine, R. S. Nature Clim. Change 3, 105–111 (2013).
Kato, E. & Yamagata, Y. Earth's Future 2, 421–439 (2014).
The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model (Argonne National Laboratory, 2014); http://go.nature.com/TjSsWx
Youngs, H. & Somerville, C. Science 344, 1095–1096 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sanchez, D., Kammen, D. A commercialization strategy for carbon-negative energy. Nat Energy 1, 15002 (2016). https://doi.org/10.1038/nenergy.2015.2
Published:
DOI: https://doi.org/10.1038/nenergy.2015.2