Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Risk factors for prostate cancer

Abstract

The incidence of prostate cancer continues to increase in the US. Compared with other common cancers such as those of the breast and lung, the causes of prostate cancer remain poorly understood. Research endeavors continue to identify predictors of risk for prostate cancer, of which familial and genetic factors are among the strongest. Known risk factors can show significant heterogeneity in their association with prostate cancer development. However, the identification and further characterization of risk modifiers might provide insight into treatment and prevention of prostate cancer.

Key Points

  • Prostate cancer remains the most common noncutaneous cancer in men worldwide

  • Risk factors for prostate cancer are numerous and heterogeneous; they include genetic, inflammatory and infectious, androgen-related, dietary, age-related, and ethnic factors that contribute to prostate cancer susceptibility

  • Numerous research endeavors are underway to identify and characterize factors that modify the risk of prostate cancer

  • Modifiable risk factors, once discovered, can be targeted in prostate cancer prevention strategies

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Coleman MP et al. (2008) Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol 9: 730–756

    Article  Google Scholar 

  2. Nelen V (2007) Epidemiology of prostate cancer. Recent Results Cancer Res 175: 1–8

    Article  Google Scholar 

  3. Grönberg H (2003) Prostate cancer epidemiology. Lancet 361: 859–864

    Article  Google Scholar 

  4. Sakr WA et al. (1993) The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150: 379–385

    CAS  Article  Google Scholar 

  5. Hankey BF et al. (1999) Cancer surveillance series: interpreting trends in prostate cancer—part I: evidence of the effects of screening in recent prostate cancer incidence, mortality, and survival rates. J Natl Cancer Inst 91: 1017–1024

    CAS  Article  Google Scholar 

  6. Potosky AL et al. (1995) The role of increasing detection in the rising incidence of prostate cancer. JAMA 273: 548–552

    CAS  Article  Google Scholar 

  7. Lilja H et al. (2007) Long-term prediction of prostate cancer up to 25 years before diagnosis of prostate cancer using prostate kallikreins measured at age 44 to 50 years. J Clin Oncol 25: 431–436

    CAS  Article  Google Scholar 

  8. Quinn M and Babb P (2002) Patterns and trends in prostate cancer incidence, survival, prevalence and mortality. Part II: individual countries. BJU Int 90: 174–184

    CAS  Article  Google Scholar 

  9. Woolf CM (1960) An investigation of the familial aspects of carcinoma of the prostate. Cancer 13: 739–744

    CAS  Article  Google Scholar 

  10. Eeles RA et al. (1997) Familial prostate cancer: the evidence and the Cancer Research Campaign/British Prostate Group (CRC/BPG) UK Familial Prostate Cancer Study. Br J Urol 79 (Suppl 1): 8–14

    Article  Google Scholar 

  11. Bratt O (2002) Hereditary prostate cancer: clinical aspects. J Urol 168: 906–913

    Article  Google Scholar 

  12. Carter BS et al. (1993) Hereditary prostate cancer: epidemiologic and clinical features. J Urol 150: 797–802

    CAS  Article  Google Scholar 

  13. Carter BS et al. (1992) Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 89: 3367–3371

    CAS  Article  Google Scholar 

  14. Grönberg H et al. (1994) Studies of genetic factors in prostate cancer in a twin population. J Urol 152: 1484–1487

    Article  Google Scholar 

  15. Page WF et al. (1997) Heredity and prostate cancer: a study of World War II veteran twins. Prostate 33: 240–245

    CAS  Article  Google Scholar 

  16. Gillanders EM et al. (2004) Combined genome-wide scan for prostate cancer susceptibility genes. J Natl Cancer Inst 96: 1240–1247

    CAS  Article  Google Scholar 

  17. Klein EA and Silverman R (2008) Inflammation, infection, and prostate cancer. Curr Opin Urol 18: 315–319

    Article  Google Scholar 

  18. Amundadottir LT et al. (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38: 652–658

    CAS  Article  Google Scholar 

  19. Zheng SL et al. (2008) Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358: 910–919

    CAS  Article  Google Scholar 

  20. Xu J et al. (2008) Association of prostate cancer risk variants with clinicopathologic characteristics of the disease. Clin Cancer Res 14: 5819–5824

    CAS  Article  Google Scholar 

  21. Ellinger J et al. (2008) CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology 71: 161–167

    Article  Google Scholar 

  22. Petrovics G et al. (2005) Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24: 3847–3852

    CAS  Article  Google Scholar 

  23. Oikawa T and Yamada T (2003) Molecular biology of the ETS family of transcription factors. Gene 303: 11–34

    CAS  Article  Google Scholar 

  24. Tomlins SA et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648

    CAS  Article  Google Scholar 

  25. Perner S et al. (2006) TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66: 8337–8341

    CAS  Article  Google Scholar 

  26. Morris DS et al. (2008) The discovery and application of gene fusions in prostate cancer. BJU Int 102: 276–282

    CAS  Article  Google Scholar 

  27. Coussens LM and Werb Z (2002) Inflammation and cancer. Nature 420: 860–867

    CAS  Article  Google Scholar 

  28. Platz EA and De Marzo AM (2004) Epidemiology of inflammation and prostate cancer. J Urol 171 (2 Suppl): S36–S40

    PubMed  Google Scholar 

  29. Dennis LK et al. (2002) Epidemiologic association between prostatitis and prostate cancer. Urology 60: 78–83

    Article  Google Scholar 

  30. Dennis LK and Dawson DV (2002) Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 13: 72–79

    Article  Google Scholar 

  31. Sarma AV et al. (2006) Sexual behavior, sexually transmitted diseases and prostatitis: the risk of prostate cancer in black men. J Urol 176: 1108–1113

    Article  Google Scholar 

  32. Sutcliffe S et al. (2006) Gonorrhea, syphilis, clinical prostatitis, and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15: 2160–2166

    Article  Google Scholar 

  33. Sutcliffe S et al. (2007) Plasma antibodies against Chlamydia trachomatis, human papillomavirus, and human herpesvirus type 8 in relation to prostate cancer: a prospective study. Cancer Epidemiol Biomarkers Prev 16: 1573–1580

    CAS  Article  Google Scholar 

  34. De Marzo AM et al. (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7: 256–269

    CAS  Article  Google Scholar 

  35. Casey G et al. (2002) RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 32: 581–583

    CAS  Article  Google Scholar 

  36. Larson BT et al. (2008) Pathological aggressiveness of prostatic carcinomas related to RNASEL R462Q allelic variants. J Urol 179: 1344–1348

    CAS  Article  Google Scholar 

  37. Urisman A et al. (2006) Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2: e25

    Article  Google Scholar 

  38. Hsing AW (2001) Hormones and prostate cancer: what's next? Epidemiol Rev 23: 42–58

    CAS  Article  Google Scholar 

  39. Gann PH et al. (1996) Prospective study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst 88: 1118–1126

    CAS  Article  Google Scholar 

  40. Eaton NE et al. (1999) Endogenous sex hormones and prostate cancer: a quantitative review of prospective studies. Br J Cancer 80: 930–934

    CAS  Article  Google Scholar 

  41. Roddam AW et al. (2008) Endogenous sex hormones and prostate cancer: a collaborative analysis of 18 prospective studies. J Natl Cancer Inst 100: 170–183

    CAS  Article  Google Scholar 

  42. Jaffe JM et al. (2000) Association of SRD5A2 genotype and pathological characteristics of prostate tumors. Cancer Res 60: 1626–1630

    CAS  PubMed  Google Scholar 

  43. Makridakis NM et al. (1999) Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 354: 975–978

    CAS  Article  Google Scholar 

  44. Pearce CL et al. (2008) No association between the SRD5A2 gene A49T missense variant and prostate cancer risk: lessons learned. Hum Mol Genet 17: 2456–2461

    CAS  Article  Google Scholar 

  45. Scariano JK et al. (2008) The SRD5A2 V89L polymorphism is associated with severity of disease in men with early onset prostate cancer. Prostate 68: 1798–1805

    CAS  Article  Google Scholar 

  46. Setiawan VW et al. (2007) CYP17 genetic variation and risk of breast and prostate cancer from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev 16: 2237–2246

    CAS  Article  Google Scholar 

  47. Sarma AV et al. (2008) Genetic polymorphisms in CYP17, CYP3A4, CYP19A1, SRD5A2, IGF-1, and IGFBP-3 and prostate cancer risk in African-American men: the Flint Men's Health Study. Prostate 68: 296–305

    CAS  Article  Google Scholar 

  48. Neslund-Dudas C et al. (2007) SRD5A2 and HSD3B2 polymorphisms are associated with prostate cancer risk and aggressiveness. Prostate 67: 1654–1663

    CAS  Article  Google Scholar 

  49. Thompson IM et al. (2003) The influence of finasteride on the development of prostate cancer. N Engl J Med 349: 215–224

    CAS  Article  Google Scholar 

  50. Lucia MS et al. (2007) Finasteride and high-grade prostate cancer in the Prostate Cancer Prevention Trial. J Natl Cancer Inst 99: 1375–1383

    CAS  Article  Google Scholar 

  51. Redman MW et al. (2008) Finasteride does not increase the risk of high-grade prostate cancer: a bias-adjusted modeling approach. Cancer Prev Res (Phila Pa) 1: 174–181

    CAS  Article  Google Scholar 

  52. Bostwick DG et al. (2004) Human prostate cancer risk factors. Cancer 101: 2371–2490

    CAS  Article  Google Scholar 

  53. Muir CS et al. (1991) The epidemiology of prostatic cancer: geographical distribution and time-trends. Acta Oncol 30: 133–140

    CAS  Article  Google Scholar 

  54. Shimizu H et al. (1991) Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer 63: 963–966

    CAS  Article  Google Scholar 

  55. Kaaks R et al. (2000) Plasma androgens, IGF-1, body size, and prostate cancer risk: a synthetic review. Prostate Cancer Prostatic Dis 3: 157–172

    CAS  Article  Google Scholar 

  56. Nelson WG et al. (2004) The role of inflammation in the pathogenesis of prostate cancer. J Urol 172 (5 Suppl): S6–S11

    CAS  PubMed  Google Scholar 

  57. Clinton SK et al. (1988) The combined effects of dietary protein and fat intake during the promotion phase of 7,12-dimethylbenz(a)anthracene-induced breast cancer in rats. J Nutr 118: 1577–1585

    CAS  Article  Google Scholar 

  58. Wang Y et al. (1995) Decreased growth of established human prostate LNCaP tumors in nude mice fed a low-fat diet. J Natl Cancer Inst 87: 1456–1462

    CAS  Article  Google Scholar 

  59. Aronson WJ et al. (1999) Decreased growth of human prostate LNCaP tumors in SCID mice fed a low-fat, soy protein diet with isoflavones. Nutr Cancer 35: 130–136

    CAS  Article  Google Scholar 

  60. MacInnis RJ and English DR (2006) Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control 17: 989–1003

    Article  Google Scholar 

  61. Gong Z et al. (2006) Obesity, diabetes, and risk of prostate cancer: results from the Prostate Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev 15: 1977–1983

    Article  Google Scholar 

  62. Han JH et al. (2008) Relationship between serum prostate-specific antigen levels and components of metabolic syndrome in healthy men. Urology 72: 749–754

    Article  Google Scholar 

  63. Freedland S et al. (2008) Obesity is a significant risk factor for prostate cancer at the time of biopsy. Urology 72: 1102–1105

    Article  Google Scholar 

  64. Kasper JS and Giovannucci E (2006) A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15: 2056–2062

    Article  Google Scholar 

  65. Leitzmann MF et al. (2008) Diabetes mellitus and prostate cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cancer Causes Control 19: 1267–1276

    Article  Google Scholar 

  66. Frankenberry KA et al. (2004) Leptin induces cell migration and the expression of growth factors in human prostate cancer cells. Am J Surg 188: 560–565

    CAS  Article  Google Scholar 

  67. Somasundar P et al. (2004) Leptin is a growth factor in cancer. J Surg Res 116: 337–349

    CAS  Article  Google Scholar 

  68. Hsing AW et al. (2007) Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr 86: 843S–857S

    CAS  Article  Google Scholar 

  69. Ribeiro R et al. (2004) Overexpressing leptin genetic polymorphism (–2548 G/A) is associated with susceptibility to prostate cancer and risk of advanced disease. Prostate 59: 268–274

    CAS  Article  Google Scholar 

  70. Giovannucci E et al. (1993) A prospective study of dietary fat and risk of prostate cancer. J Natl Cancer Inst 85: 1571–1579

    CAS  Article  Google Scholar 

  71. Hayes RB et al. (1999) Dietary factors and risks for prostate cancer among blacks and whites in the United States. Cancer Epidemiol Biomarkers Prev 8: 25–34

    CAS  PubMed  Google Scholar 

  72. Oakley-Girvan I et al. (2004) Risk of early-onset prostate cancer in relation to germ line polymorphisms of the vitamin D receptor. Cancer Epidemiol Biomarkers Prev 13: 1325–1330

    CAS  PubMed  Google Scholar 

  73. Lippman SM et al. (2005) Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J Natl Cancer Inst 97: 94–102

    CAS  Article  Google Scholar 

  74. Lippman SM et al. (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301: 39–51

    CAS  Article  Google Scholar 

  75. Sesso HD et al. (2001) Alcohol consumption and risk of prostate cancer: The Harvard Alumni Health Study. Int J Epidemiol 30: 749–755

    CAS  Article  Google Scholar 

  76. Schoonen WM et al. (2005) Alcohol consumption and risk of prostate cancer in middle-aged men. Int J Cancer 113: 133–140

    CAS  Article  Google Scholar 

  77. Ewings P and Bowie C (1996) A case–control study of cancer of the prostate in Somerset and east Devon. Br J Cancer 74: 661–666

    CAS  Article  Google Scholar 

  78. Giles GG et al. (2003) Sexual factors and prostate cancer. BJU Int 92: 211–216

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patel, A., Klein, E. Risk factors for prostate cancer. Nat Rev Urol 6, 87–95 (2009). https://doi.org/10.1038/ncpuro1290

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpuro1290

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing