Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biologic agents as adjunctive therapy for prostate cancer: a rationale for use with androgen deprivation

Abstract

The prevalence of prostate cancer emphasizes the need for improved therapeutic options, particularly for metastatic disease. Current treatment includes medical or surgical castration, which initially induces apoptosis of prostate cancer cells, but ultimately an androgen-independent subpopulation emerges. In addition to a transient therapeutic effect, androgen-deprivation therapy (ADT) can initiate biochemical events that may contribute to the development of and progression to an androgen-independent state. This transition involves multiple signal transduction pathways that are accompanied by many biochemical changes resulting from ADT. These molecular events themselves are therapeutic targets and serve as a rationale for adjunctive treatment at the time of ADT.

Key Points

  • Although not completely understood, the progression of prostate cancer to an androgen-independent state probably involves multiple biochemical pathways

  • Therapeutic androgen ablation is likely to be an initial factor driving this biochemical cascade of events

  • Novel biologic agents are now available enabling modification of some of the pathways involved in the development of androgen-independent prostate cancer

  • Current clinical data shows some efficacy for biologic agents when used with chemotherapy in the setting of androgen-independent disease

  • Future trials should also test biologic agents at the time of androgen ablation to attempt to maximize the initial apoptotic response and delay the onset of androgen independence

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three possible pathways leading to androgen-independent prostate cancer.
Figure 2: Comparison of growth factor and neuropeptide signaling pathways emphasizing cross-talk between them.

Similar content being viewed by others

References

  1. Jemal A et al. (2006) Cancer statistics, 2006. CA Cancer J Clin 56: 106–130

    Article  PubMed  Google Scholar 

  2. Smaletz O et al. (2002) Nomogram for overall survival of patients with progressive metastatic prostate cancer after castration. J Clin Oncol 20: 3972–3982

    Article  PubMed  Google Scholar 

  3. Sharifi N and Farrar WL (2006) Androgen receptor as a therapeutic target for androgen independent prostate cancer. Am J Ther 13: 166–170

    Article  PubMed  Google Scholar 

  4. Feldman BJ and Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45

    Article  CAS  PubMed  Google Scholar 

  5. So A et al. (2005) Mechanisms of the development of androgen independence in prostate cancer. World J Urol 23: 1–9

    Article  CAS  PubMed  Google Scholar 

  6. Wu RC et al. (2005) Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr Rev 26: 393–399

    Article  CAS  PubMed  Google Scholar 

  7. Culig Z et al. (2004) Expression and function of androgen receptor coactivators in prostate cancer. J Steroid Biochem Mol Biol 92: 265–271

    Article  CAS  PubMed  Google Scholar 

  8. Gioeli D et al. (1999) Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59: 279–284

    CAS  PubMed  Google Scholar 

  9. Lorenzo GD et al. (2003) Involvement of growth factor receptors of the epidermal growth factor receptor family in prostate cancer development and progression to androgen independence. Clin Prostate Cancer 2: 50–57

    Article  PubMed  Google Scholar 

  10. Lara PN Jr et al. (2004) Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer 100: 2125–2131

    Article  CAS  PubMed  Google Scholar 

  11. Ziada A et al. (2004) The use of trastuzumab in the treatment of hormone refractory prostate cancer; phase II trial. Prostate 60: 332–337

    Article  CAS  PubMed  Google Scholar 

  12. van der Poel HG (2004) Smart drugs in prostate cancer. Eur Urol. 45: 1–17

    Article  CAS  PubMed  Google Scholar 

  13. Smith MR and Nelson JB (2005) Future therapies in hormone-refractory prostate cancer. Urology 65: 9–16; discussion 17

    Article  PubMed  Google Scholar 

  14. Canil CM et al. (2005) Randomized phase II study of two doses of gefitinib in hormone-refractory prostate cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group. J Clin Oncol 23: 455–460

    Article  CAS  PubMed  Google Scholar 

  15. Krueckl SL et al. (2004) Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res 64: 8620–8629

    Article  CAS  PubMed  Google Scholar 

  16. Miyake H et al. (2000) Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models. Cancer Res 60: 3058–3064

    CAS  PubMed  Google Scholar 

  17. Kiyama S et al. (2003) Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors. Cancer Res 63: 3575–3584

    CAS  PubMed  Google Scholar 

  18. Miyata Y et al. (2004) Expression of insulin-like growth factor binding protein-3 before and after neoadjuvant hormonal therapy in human prostate cancer tissues: correlation with histopathologic effects and biochemical recurrence. Urology 63: 1184–1190

    Article  PubMed  Google Scholar 

  19. Papandreou CN et al. (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat Med 4: 50–57

    Article  CAS  PubMed  Google Scholar 

  20. Lee LF et al. (2001) Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol 21: 8385–8397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amorino GP and Parsons SJ (2004) Neuroendocrine cells in prostate cancer. Crit Rev Eukaryot Gene Expr 14: 287–300

    Article  CAS  PubMed  Google Scholar 

  22. Song L et al. (2006) Dasatinib (BMS-354825) selectively induces apoptosis in lung cancer cells dependent on epidermal growth factor receptor signaling for survival. Cancer Res 66: 5542–5548

    Article  CAS  PubMed  Google Scholar 

  23. Yang JC et al. (2005) Src kinase inhibition of neuropeptide-induced androgen-independent prostate cancer. Proc Amer Assoc Cancer Res 46: 3180

    Google Scholar 

  24. Nam S et al. (2005) Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res 65: 9185–9189

    Article  CAS  PubMed  Google Scholar 

  25. McDonnell TJ et al. (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52: 6940–6944

    CAS  PubMed  Google Scholar 

  26. Colombel M et al. (1993) Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am J Pathol 143: 390–400

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi Y et al. (2006) Role of coordinated molecular alterations in the development of androgen-independent prostate cancer: an in vitro model that corroborates clinical observations. BJU Int 97: 170–178

    Article  CAS  PubMed  Google Scholar 

  28. Miyake H et al. (2001) Novel therapeutic strategy for advanced prostate cancer using antisense oligodeoxynucleotides targeting anti-apoptotic genes upregulated after androgen withdrawal to delay androgen-independent progression and enhance chemosensitivity. Int J Urol 8: 337–349

    Article  CAS  PubMed  Google Scholar 

  29. Tolcher AW et al. (2005) A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 11: 3854–3861

    Article  CAS  PubMed  Google Scholar 

  30. Gleave M et al. (2005) Beyond simple castration: targeting the molecular basis of treatment resistance in advanced prostate cancer. Cancer Chemother Pharmacol 56 (Suppl 1): 47–57

    Article  PubMed  CAS  Google Scholar 

  31. July LV et al. (2002) Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate 50: 179–188

    Article  CAS  PubMed  Google Scholar 

  32. Miyake H et al. (2005) Antisense oligodeoxynucleotide therapy targeting clusterin gene for prostate cancer: Vancouver experience from discovery to clinic. Int J Urol 12: 785–794

    Article  CAS  PubMed  Google Scholar 

  33. Chi KN et al. (2005) A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2′-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst 97: 1287–1296

    Article  CAS  PubMed  Google Scholar 

  34. Baretton GB et al. (1999) Proliferation- and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. Br J Cancer 80: 546–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wikstrom P et al. (1999) Early castration-induced upregulation of transforming growth factor beta1 and its receptors is associated with tumor cell apoptosis and a major decline in serum prostate-specific antigen in prostate cancer patients. Prostate 38: 268–277

    Article  CAS  PubMed  Google Scholar 

  36. Chevalier S et al. (2002) Vascular endothelial growth factor and signaling in the prostate: more than angiogenesis. Mol Cell Endocrinol 189: 169–179

    Article  CAS  PubMed  Google Scholar 

  37. George DJ et al. (2001) Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 7: 1932–1936

    CAS  PubMed  Google Scholar 

  38. Lara PN Jr et al. (2004) Angiogenesis-targeted therapies in prostate cancer. Clin Prostate Cancer 3: 165–173

    Article  CAS  PubMed  Google Scholar 

  39. Picus J et al. (2003) The use of bevacizumab (B) with docetaxel (D) and estramustine (E) in hormone refractory prostate cancer (HRPC): Initial results of CALGB 90006. Proc Am Soc Clin Oncol 22: 393

    Google Scholar 

  40. Schlaepfer DD and Hunter T (1998) Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol 8: 151–157

    Article  CAS  PubMed  Google Scholar 

  41. Danen EH and Yamada KM (2001) Fibronectin, integrins, and growth control. J Cell Physiol 189: 1–13

    Article  CAS  PubMed  Google Scholar 

  42. Stewart DA et al. (2004) Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2: 2

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stubbs AP et al. (1999) Differentially expressed genes in hormone refractory prostate cancer: association with chromosomal regions involved with genetic aberrations. Am J Pathol 154: 1335–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Legrier ME et al. (2004) Mucinous differentiation features associated with hormonal escape in a human prostate cancer xenograft. Br J Cancer 90: 720–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. North SA et al. (2006) A pilot study of the liposomal MUC1 vaccine BLP25 in prostate specific antigen failures after radical prostatectomy. J Urol 176: 91–95

    Article  CAS  PubMed  Google Scholar 

  46. Kousidou O et al. (2006) Effects of the natural isoflavonoid genistein on growth, signaling pathways and gene expression of matrix macromolecules by breast cancer cells. Mini Rev Med Chem 6: 331–337

    Article  CAS  PubMed  Google Scholar 

  47. Papandreou CN and Logothetis CJ (2004) Bortezomib as a potential treatment for prostate cancer. Cancer Res 64: 5036–5043

    Article  CAS  PubMed  Google Scholar 

  48. Orlowski RZ and Baldwin AS Jr (2002) NF-kappaB as a therapeutic target in cancer. Trends Mol Med 8: 385–389

    Article  CAS  PubMed  Google Scholar 

  49. Price N and Dreicer R (2004) Phase I/II trial of bortezomib plus docetaxel in patients with advanced androgen-independent prostate cancer. Clin Prostate Cancer 3: 141–143

    Article  PubMed  Google Scholar 

  50. Papandreou CN et al. (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22: 2108–2121

    Article  CAS  PubMed  Google Scholar 

  51. Petrylak DP et al. (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351: 1513–1520

    Article  CAS  PubMed  Google Scholar 

  52. Tannock IF et al. (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351: 1502–1512

    Article  CAS  PubMed  Google Scholar 

  53. Chung LW et al. (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173: 10–20

    Article  PubMed  Google Scholar 

  54. Gregory CW et al. (1998) Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 58: 5718–5724

    CAS  PubMed  Google Scholar 

  55. Hong H et al. (2004) Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer 101: 83–89

    Article  CAS  PubMed  Google Scholar 

  56. Debes JD et al. (2002) p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62: 5632–5636

    CAS  PubMed  Google Scholar 

  57. Halkidou K et al. (2003) Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22: 2466–2477

    Article  CAS  PubMed  Google Scholar 

  58. Culig Z et al. (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–5478

    CAS  PubMed  Google Scholar 

  59. Dorkin TJ et al. (1999) aFGF immunoreactivity in prostate cancer and its co-localization with bFGF and FGF8. J Pathol 189: 564–569

    Article  CAS  PubMed  Google Scholar 

  60. Sirotnak FM et al. (2004) Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog 41: 150–163

    Article  CAS  PubMed  Google Scholar 

  61. Bubendorf L et al. (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91: 1758–1764

    Article  CAS  PubMed  Google Scholar 

  62. Stewart RJ et al. (2001) Vascular endothelial growth factor expression and tumor angiogenesis are regulated by androgens in hormone responsive human prostate carcinoma: evidence for androgen dependent destabilization of vascular endothelial growth factor transcripts. J Urol 165: 688–693

    Article  CAS  PubMed  Google Scholar 

  63. Aslan G et al. (2005) Vascular endothelial growth factor expression in untreated and androgen-deprived patients with prostate cancer. Pathol Res Pract 201: 593–598

    Article  CAS  PubMed  Google Scholar 

  64. Zellweger T et al. (2005) Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer 113: 619–628

    Article  CAS  PubMed  Google Scholar 

  65. Naimi B et al. (2002) Down-regulation of (IIIb) and (IIIc) isoforms of fibroblast growth factor receptor 2 (FGFR2) is associated with malignant progression in human prostate. Prostate 52: 245–252

    Article  CAS  PubMed  Google Scholar 

  66. Dizeyi N et al. (2005) Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol 47: 895–900

    Article  CAS  PubMed  Google Scholar 

  67. Jongsma J et al. (2000) Androgen deprivation of the PC-310 [correction of prohormone convertase-310] human prostate cancer model system induces neuroendocrine differentiation. Cancer Res 60: 741–748

    CAS  PubMed  Google Scholar 

  68. Salido M et al. (2002) Neuropeptides bombesin and calcitonin inhibit apoptosis-related elemental changes in prostate carcinoma cell lines. Cancer 94: 368–377

    Article  CAS  PubMed  Google Scholar 

  69. Takahashi W et al. (2003) Regulatory effect of castration on endothelins, their receptors and endothelin-converting enzyme in rat seminal vesicle. BJU Int 92: 803–809

    Article  CAS  PubMed  Google Scholar 

  70. Yashi M et al. (2003) Elevated serum progastrin-releasing peptide (31-98) level is a predictor of short response duration after hormonal therapy in metastatic prostate cancer. Prostate 56: 305–312

    Article  CAS  PubMed  Google Scholar 

  71. Levine L et al. (2003) Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 63: 3495–3502

    CAS  PubMed  Google Scholar 

  72. Yuan TC et al. (2006) Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Cancer 13: 151–167

    Article  CAS  PubMed  Google Scholar 

  73. Vashchenko N and Abrahamsson PA (2005) Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 47: 147–155

    Article  CAS  PubMed  Google Scholar 

  74. Gutierrez-Canas I et al. (2005) Vasoactive intestinal peptide induces neuroendocrine differentiation in the LNCaP prostate cancer cell line through PKA, ERK, and PI3K. Prostate 63: 44–55

    Article  CAS  PubMed  Google Scholar 

  75. Sugihara A et al. (1998) Expression of cytokines enhancing the osteoclast activity, and parathyroid hormone-related protein in prostatic cancers before and after endocrine therapy: an immunohistochemical study. Oncol Rep 5: 1389–1394

    CAS  PubMed  Google Scholar 

  76. Wise GJ et al. (2000) Cytokine variations in patients with hormone treated prostate cancer. J Urol 164: 722–725

    Article  CAS  PubMed  Google Scholar 

  77. Lee LF et al. (2004) Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23: 2197–2205

    Article  CAS  PubMed  Google Scholar 

  78. Huerta-Yepez S et al. (2006) Involvement of the TNF-alpha autocrine-paracrine loop, via NF-kappaB and YY1, in the regulation of tumor cell resistance to Fas-induced apoptosis. Clin Immunol 120: 297–309

    Article  CAS  PubMed  Google Scholar 

  79. Watson RW and Fitzpatrick JM (2005) Targeting apoptosis in prostate cancer: focus on caspases and inhibitors of apoptosis proteins. BJU Int 96 (Suppl 2): 30–34

    Article  PubMed  Google Scholar 

  80. Koivisto PA and Rantala I (1999) Amplification of the androgen receptor gene is associated with P53 mutation in hormone-refractory recurrent prostate cancer. J Pathol 187: 237–241

    Article  CAS  PubMed  Google Scholar 

  81. Pflug BR et al. (1999) Caveolin expression is decreased following androgen deprivation in human prostate cancer cell lines. Prostate 40: 269–273

    Article  CAS  PubMed  Google Scholar 

  82. Persad S and Dedhar S (2003) The role of integrin-linked kinase (ILK) in cancer progression. Cancer Metastasis Rev 22: 375–384

    Article  CAS  PubMed  Google Scholar 

  83. Miyamoto H et al. (2005) Inhibition of the Akt, cyclooxygenase-2, and matrix metalloproteinase-9 pathways in combination with androgen deprivation therapy: potential therapeutic approaches for prostate cancer. Mol Carcinog 44: 1–10

    Article  CAS  PubMed  Google Scholar 

  84. Kiviniemi J et al. (2004) Altered expression of syndecan-1 in prostate cancer. Apmis 112: 89–97

    Article  CAS  PubMed  Google Scholar 

  85. Lokeshwar BL (1999) MMP inhibition in prostate cancer. Ann N Y Acad Sci 878: 271–289

    Article  CAS  PubMed  Google Scholar 

  86. Bratland A et al. (2003) The metalloproteinase inhibitor TIMP-2 is down-regulated by androgens in LNCaP prostate carcinoma cells. Clin Exp Metastasis 20: 541–547

    Article  CAS  PubMed  Google Scholar 

  87. Nishiyama T et al. (2004) The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 10: 7121–7126

    Article  CAS  PubMed  Google Scholar 

  88. Lei Q et al. (2006) NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9: 367–378

    Article  CAS  PubMed  Google Scholar 

  89. Majumder PK and Sellers WR (2005) Akt-regulated pathways in prostate cancer. Oncogene 24: 7465–7474

    Article  CAS  PubMed  Google Scholar 

  90. Edwards J et al. (2004) The role of c-Jun and c-Fos expression in androgen-independent prostate cancer. J Pathol 204: 153–158

    Article  CAS  PubMed  Google Scholar 

  91. Aprikian AG et al. (1996) Bombesin specifically induces intracellular calcium mobilization via gastrin-releasing peptide receptors in human prostate cancer cells. J Mol Endocrinol 16: 297–306

    Article  CAS  PubMed  Google Scholar 

  92. Sumitomo M et al. (2001) Neutral endopeptidase inhibits neuropeptide-mediated transactivation of the insulin-like growth factor receptor-Akt cell survival pathway. Cancer Res 61: 3294–3298

    CAS  PubMed  Google Scholar 

  93. Devi GR et al. (2005) In vivo bioavailability and pharmacokinetics of a c-MYC antisense phosphorodiamidate morpholino oligomer, AVI-4126, in solid tumors. Clin Cancer Res 11: 3930–3938

    Article  CAS  PubMed  Google Scholar 

  94. Smith MR et al. (2006) Celecoxib versus placebo for men with prostate cancer and a rising serum prostate-specific antigen after radical prostatectomy and/or radiation therapy. J Clin Oncol 24: 2723–2728

    Article  CAS  PubMed  Google Scholar 

  95. Pruthi RS et al. (2003) Cyclooxygenase-2 as a potential target in the prevention and treatment of genitourinary tumors: a review. J Urol 169: 2352–2359

    Article  CAS  PubMed  Google Scholar 

  96. Ling MT et al. (2004) Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R). Carcinogenesis 25: 517–525

    Article  CAS  PubMed  Google Scholar 

  97. Ettinger SL et al. (2004) Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res 64: 2212–2221

    Article  CAS  PubMed  Google Scholar 

  98. Sasaki T et al. (2005) Changes in chromogranin a serum levels during endocrine therapy in metastatic prostate cancer patients. Eur Urol 48: 224-229; discussion 229–230

    Article  CAS  PubMed  Google Scholar 

  99. Imasato Y et al. (2000) PSP94 expression after androgen deprivation therapy: a comparative study with prostate specific antigen in benign prostate and prostate cancer. J Urol 164: 1819–1824

    Article  CAS  PubMed  Google Scholar 

  100. Rittmaster RS et al. (1999) The utility of tissue transglutaminase as a marker of apoptosis during treatment and progression of prostate cancer. J Urol 162: 2165–2169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research supported in part by NIH grant KO8 DK60748-01 and Department of Defense grant PC040161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, E., Cambio, A., Yang, J. et al. Biologic agents as adjunctive therapy for prostate cancer: a rationale for use with androgen deprivation. Nat Rev Urol 4, 82–94 (2007). https://doi.org/10.1038/ncpuro0700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpuro0700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing