Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primer: comparative genetics of animal models of arthritis—a tool to resolve complexity

Abstract

Complex traits, including inflammatory rheumatic diseases, have important genetic features, but most of the responsible genes have not been conclusively identified. Genetic analysis of inbred animal models and comparative genetics—the comparison of genes between different species—might help to identify the crucial genes and to investigate more directly the biology involved. Genome-wide linkage analysis of particular genes can be assessed by genetic segregation studies, whereas disease pathways can be delineated by the use of congenic strains. To clone disease genes, the traits need to be transformed so that they are inherited in a more Mendelian manner: achieving this pattern requires isolation of the locus on a genetic background that allows high penetrance by minimization of the size of congenic fragments, genetic manipulations without associated artifacts, or identification of highly penetrant mutations by phenotypic selection. Although almost one hundred quantitative trait loci for arthritis have been identified, only a few genes have so far been positionally cloned. In this Review we highlight the possibilities of using animal models to identify genes associated with complex diseases like arthritis, illustrated with available findings for genes such as those encoding major histocompatibility complex class II, neutrophil cytosolic factor 1 (Ncf1/p47phox) and ZAP70.

Key Points

  • Linkage analysis (i.e. hypothesis-free genetic analysis) is not effective in human complex diseases such as rheumatoid arthritis, but is more effective in animal models

  • Positional identification of genes underlying identified loci is still a difficult task and only a few have been identified in animal models, including major histocompatibility complex class II and Ncf1

  • Identification of genetic polymorphisms provides valuable insight into new molecular pathways leading to disease

  • There are several methods for facilitating the gene search including high density crosses and selection of highly penetrant mutations

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The major histocompatibility complex (MHC) class II Aq as an early example of positional cloning of a gene.
Figure 2: Mice expressing the human class II molecule DRB1*0401 and lacking murine class II molecules are susceptible to collagen-induced arthritis.
Figure 3: Role of identified genes associated with arthritis in T-cell activation.

Similar content being viewed by others

References

  1. Jawaheer D et al. (2003) Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 48: 906–916

    Article  CAS  Google Scholar 

  2. MacKay K et al. (2002) Whole-genome linkage analysis of rheumatoid arthritis susceptibility loci in 252 affected sibling pairs in the United Kingdom. Arthritis Rheum 46: 632–639

    Article  CAS  Google Scholar 

  3. Begovich AB et al. (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75: 330–337

    Article  CAS  Google Scholar 

  4. Tokuhiro S et al. (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35: 341–348

    Article  CAS  Google Scholar 

  5. Suzuki A et al. (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34: 395–402

    Article  CAS  Google Scholar 

  6. Kochi Y et al. (2005) A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 37: 478–485

    Article  CAS  Google Scholar 

  7. Barton A et al. (2004) A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum 50: 1117–1121

    Article  CAS  Google Scholar 

  8. Kuwahara M et al. (2005) Failure to confirm association between SLC22A4 polymorphism and rheumatoid arthritis in a Japanese population. Arthritis Rheum 52: 2947–2948

    Article  CAS  Google Scholar 

  9. Plenge RM et al. (2005) Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 77: 1044–1060

    Article  CAS  Google Scholar 

  10. Stastny P (1978) Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med 298: 869–871

    Article  CAS  Google Scholar 

  11. Gregersen PK et al. (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30: 1205–1213

    Article  CAS  Google Scholar 

  12. Vingsbo-Lundberg C et al. (1998) Genetic control of arthritis onset, severity and chronicity in a model for rheumatoid arthritis in rats. Nat Genet 20: 401–404

    Article  CAS  Google Scholar 

  13. Butterfield RJ et al. (1999) Genetic analysis of disease subtypes and sexual dimorphisms in mouse experimental allergic encephalomyelitis (EAE): relapsing/remitting and monophasic remitting/nonrelapsing EAE are immunogenetically distinct. J Immunol 162: 3096–3102

    CAS  PubMed  Google Scholar 

  14. Rantapaa-Dahlqvist S et al. (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48: 2741–2749

    Article  Google Scholar 

  15. Kuhn KA et al. (2006) Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 116: 961–973

    Article  CAS  Google Scholar 

  16. Dzhambazov B et al. (2006) Therapeutic vaccination of active arthritis with a glycosylated collagen type II peptide in complex with MHC class II molecules. J Immunol 176: 1525–1533

    Article  CAS  Google Scholar 

  17. Bäcklund J et al. (2002) Predominant selection of T cells specific for glycosylated collagen type II peptide (263–270) in humanized transgenic mice and in rheumatoid arthritis. Proc Natl Acad Sci USA 99: 9960–9965

    Article  Google Scholar 

  18. Burnet FM (1957) A modification of Jernes theory of antibody production using the concept of clonal selection. Austral J Science 20: 67–69

    Google Scholar 

  19. Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13: 11–16

    Article  CAS  Google Scholar 

  20. Sakaguchi S et al. (1985) Organ-specific autoimmune diseases induced in mice by elimination of T cell subsets. I. Evidence for the active participation of T cells in natural self-tolerance; deficit in a T cell subset as a possible cause of autoimmune disease. J Exp Med 161: 72–87

    Article  CAS  Google Scholar 

  21. Trentham DE et al. (1977) Autoimmunity to type II collagen: an experimental model of arthritis. J Exp Med 146: 857–868

    Article  CAS  Google Scholar 

  22. Pearson CM (1956) Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc Soc Exp Biol Med 91: 95–101

    Article  CAS  Google Scholar 

  23. Vingsbo C et al. (1996) Pristane-induced arthritis in rats: a new model for rheumatoid arthritis with a chronic disease course influenced by both major histocompatibility complex and non-major histocompatibility complex genes. Am J Pathol 149: 1675–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Keffer J et al. (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10: 4025–4031

    Article  CAS  Google Scholar 

  25. Horai R et al. (2000) Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 191: 313–320

    Article  CAS  Google Scholar 

  26. Kouskoff V et al. (1996) Organ-specific disease provoked by systemic autoimmunity. Cell 87: 811–822

    Article  CAS  Google Scholar 

  27. Remmers EF et al. (1996) A genome scan localizes five non-MHC loci controlling collagen-induced arthritis in rats. Nat Genet 14: 82–85

    Article  CAS  Google Scholar 

  28. Griffiths MM et al. (2000) Identification of four new quantitative trait loci regulating arthritis severity and one new quantitative trait locus regulating autoantibody production in rats with collagen-induced arthritis. Arthritis Rheum 43: 1278–1289

    Article  CAS  Google Scholar 

  29. Jirholt J et al. (1998) Genetic linkage analysis of collagen-induced arthritis in the mouse. Eur J Immunol 28: 3321–3328

    Article  CAS  Google Scholar 

  30. Yang HT et al. (1999) Identification of genes controlling collagen-induced arthritis in mice: striking homology with susceptibility loci previously identified in the rat. J Immunol 163: 2916–2921

    CAS  PubMed  Google Scholar 

  31. Gulko PS et al. (1998) Identification of a new non-major histocompatibility complex genetic locus on chromosome 2 that controls disease severity in collagen-induced arthritis in rats. Arthritis Rheum 41: 2122–2131

    Article  CAS  Google Scholar 

  32. Lorentzen JC et al. (1998) Identification of rat susceptibility loci for adjuvant-oil induced arthritis. Proc Natl Acad Sci USA 95: 6383–6387

    Article  CAS  Google Scholar 

  33. Adarichev VA et al. (2003) Sex effect on clinical and immunologic quantitative trait loci in a murine model of rheumatoid arthritis. Arthritis Rheum 48: 1708–1720

    Article  Google Scholar 

  34. Ji H et al. (2001) Genetic influences on the end-stage effector phase of arthritis. J Exp Med 194: 321–330

    Article  CAS  Google Scholar 

  35. Bottini N et al. (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36: 337–338

    Article  CAS  Google Scholar 

  36. Barton A et al. (2001) High resolution linkage and association mapping identifies a novel rheumatoid arthritis susceptibility locus homologous to one linked to two rat models of inflammatory arthritis. Hum Mol Genet 10: 1901–1906

    Article  CAS  Google Scholar 

  37. Swanberg M et al. (2005) MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 37: 486–494

    Article  CAS  Google Scholar 

  38. Wooley PH et al. (1981) Type II collagen induced arthritis in mice. I. Major histocompatibility complex (I-region) linkage and antibody correlates. J Exp Med 154: 688–700

    Article  CAS  Google Scholar 

  39. Brunsberg U et al. (1994) Expression of a transgenic class II Ab gene confers susceptibility to collagen-induced arthritis. Eur J Immunol 24: 1698–1702

    Article  CAS  Google Scholar 

  40. Rosloniec EF et al. (1997) An HLA-DR1 transgene confers susceptibility to collagen-induced arthritis elicited with human type II collagen. J Exp Med 185: 1113–1122

    Article  CAS  Google Scholar 

  41. Andersson EC et al. (1998) Definition of MHC and T cell receptor contacts in the HLA-DR4 restricted immunodominant epitope in type II collagen and characterization of collagen-induced arthritis in HLA-DR4 and human CD4 transgenic mice. Proc Natl Acad Sci USA 95: 7574–7569

    Article  CAS  Google Scholar 

  42. Johannesson M et al. (2005) Identification of epistasis through a partial advanced intercross reveals three arthritis loci within the Cia5 QTL in mice. Genes Immun 6: 175–185

    Article  CAS  Google Scholar 

  43. Sundvall M et al. (1995) Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nat Genet 10: 313–317

    Article  CAS  Google Scholar 

  44. Valdar W et al. (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38: 879–887

    Article  CAS  Google Scholar 

  45. Chabas D et al. (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294: 1731–1735

    Article  CAS  Google Scholar 

  46. Blom T et al. (2003) Comment on “The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease”. Science 299: 1845

    Article  CAS  Google Scholar 

  47. Rosloniec EF et al. (1998) Induction of autoimmune arthritis in HLA-DR4 (DRB1*0401) transgenic mice by immunization with human and bovine type II collagen. J Immunol 160: 2573–2578

    CAS  PubMed  Google Scholar 

  48. Labrecque N et al. (1999) Toxic MHC class II beta chains [comment]. Immunity 11: 515–516

    Article  CAS  Google Scholar 

  49. Olofsson P et al. (2003) Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 33: 25–32

    Article  CAS  Google Scholar 

  50. Gelderman KA et al. (2006) T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc Natl Acad Sci USA 103: 12831–12836

    Article  CAS  Google Scholar 

  51. Hultqvist M et al. A new arthritis therapy with oxidative burst inducers. PLoS Med, in press

  52. Hultqvist M et al. (2004) Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci USA 101: 12646–12651

    Article  CAS  Google Scholar 

  53. Sakaguchi N et al. (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426: 454–460

    Article  CAS  Google Scholar 

  54. Yoshitomi H et al. (2005) A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med 201: 949–960

    Article  CAS  Google Scholar 

  55. Vang T et al. (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37: 1317–1319

    Article  CAS  Google Scholar 

  56. Watson WC and Townes AS (1985) Genetic susceptibility to murine collagen II autoimmune arthritis. Proposed relationship to the IgG2 autoantibody subclass response, complement C5, major histocompatibility complex (MHC) and non-MHC loci. J Exp Med 162: 1878–1891

    Article  CAS  Google Scholar 

  57. Aidinis V et al. (2005) Cytoskeletal rearrangements in synovial fibroblasts as a novel pathophysiological determinant of modeled rheumatoid arthritis. PLoS Genet 1: e48

    Article  Google Scholar 

  58. Kjellén P et al. (1998) The structural basis of MHC control of collagen-induced arthritis; binding of the immunodominant type II collagen 256–270 glycopeptide to H-2Aq and H-2Ap molecules. Eur J Immunol 28: 755–767

    Article  Google Scholar 

  59. Jones EY et al. (2006) MHC class II proteins and disease: a structural perspective. Nat Rev Immunol 6: 271–282

    Article  CAS  Google Scholar 

  60. Diab BY et al. (1999) Human collagen II peptide 256–271 preferentially binds to HLA-DR molecules associated with susceptibility to rheumatoid arthritis. Immunogenetics 49: 36–44

    Article  CAS  Google Scholar 

  61. Gringhuis SI et al. (2002) Linker for activation of T cells: sensing redox imbalance. Methods Enzymol 352: 248–257

    Article  CAS  Google Scholar 

  62. Mustelin T et al. (2005) Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 5: 43–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Crafoord Foundation; the Kock and Österlund Foundations; The Swedish Association Against Rheumatism; The Swedish Science Research Council; the Swedish Foundation for Strategic Research and the European Union FP6 scientific grants.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmdahl, R. Primer: comparative genetics of animal models of arthritis—a tool to resolve complexity. Nat Rev Rheumatol 3, 104–111 (2007). https://doi.org/10.1038/ncprheum0400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0400

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing