Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations?

Abstract

Since 2004, four antiangiogenic drugs have been approved for clinical use in patients with advanced solid cancers, on the basis of their capacity to improve survival in phase III clinical studies. These achievements validated the concept introduced by Judah Folkman that the inhibition of tumor angiogenesis could control tumor growth. It has been suggested that biomarkers of angiogenesis would greatly facilitate the clinical development of antiangiogenic therapies. For these four drugs, the pharmacodynamic effects observed in early clinical studies were important to corroborate activities, but were not essential for the continuation of clinical development and approval. Furthermore, no validated biomarkers of angiogenesis or antiangiogenesis are available for routine clinical use. Thus, the quest for biomarkers of angiogenesis and their successful use in the development of antiangiogenic therapies are challenges in clinical oncology and translational cancer research. We review critical points resulting from the successful clinical trials, review current biomarkers, and discuss their potential impact on improving the clinical use of available antiangiogenic drugs and the development of new ones.

Key Points

  • Four antiangiogenic drugs, bevacizumab, sorafenib, sunitinib and temsirolimus, have been approved for clinical use on the basis of results from randomized phase III clinical trials without significant contributions from biomarkers

  • No validated biomarkers of angiogenesis or antiangiogeneic activity are available for routine clinical use

  • Biomarkers of angiogenesis might be useful for monitoring angiogenesis, assessing drug activity and distinguishing between active and inactive drugs, predicting clinical outcome and response to therapy, defining the optimum biological dose, facilitating development of combination therapies, and rapidly identifying resistance to treatment

  • Biomarkers under consideration for clinical use include circulating cells, proteins (e.g. angiogenic factors, angiogenesis-associated molecules; protein expression profiles), nucleic acids (e.g. gene-expression patterns) and functional parameters (e.g. tumor perfusion, metabolism)

  • The association of laboratory investigations with clinical trials will be instrumental for the validation of biomarkers of angiogenesis and for improving the design, monitoring and evaluation of antiangiogenic treatments

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic contrast-enhanced MRI and dynamic contrast-enhanced CT of a hypervascular tumor.
Figure 2: Measurement of perfusion index in a hepatocellular carcinoma by contrast-enhanced ultrasound-based imaging.
Figure 3: Rationale for the use of biomarkers in the development of antiangiogenic therapies.

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438: 932–936

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N and Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438: 967–974

    Article  CAS  PubMed  Google Scholar 

  3. Kerbel R and Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2: 727–739

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25: 581–611

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara N et al. (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333: 328–335

    Article  CAS  PubMed  Google Scholar 

  6. Rini BI (2006) Sorafenib. Expert Opin Pharmacother 7: 453–461

    Article  CAS  PubMed  Google Scholar 

  7. Motzer RJ et al. (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24: 16–24

    Article  CAS  PubMed  Google Scholar 

  8. Dancey JE (2005) Inhibitors of the mammalian target of rapamycin. Expert Opin Investig Drugs 14: 313–328

    Article  CAS  PubMed  Google Scholar 

  9. Jain RK et al. (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3: 24–40

    Article  CAS  PubMed  Google Scholar 

  10. Therasse P (2002) Measuring the clinical response—what does it mean? Eur J Cancer 38: 1817–1823

    Article  CAS  PubMed  Google Scholar 

  11. Schilsky RL (2002) End points in cancer clinical trials and the drug approval process. Clin Cancer Res 8: 935–938

    PubMed  Google Scholar 

  12. Willett CG et al. (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10: 145–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Escudier B et al. (2007) Randomized, controlled, double-blind phase III study (AVOREN) of bevacizumab/interferon-alpha2a vs placebo/interferon-alpha2a as first-line therapy in metastatic renal cell carcinoma [abstract #3]. J Clin Oncol 25 (Suppl) S18

    Google Scholar 

  14. Hurwitz H et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342

    Article  CAS  PubMed  Google Scholar 

  15. Mass RD et al. (2005) Clinical benefit from bevacizumab (BV) in responding (R) and non-responding (NR) patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol 23: S249–S249

    Article  Google Scholar 

  16. Panares RL and Garcia AA (2007) Bevacizumab in the management of solid tumors. Expert Rev Anticancer Ther 7: 433–445

    Article  CAS  PubMed  Google Scholar 

  17. Ratain MJ et al. (2006) Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24: 2505–2512

    Article  CAS  PubMed  Google Scholar 

  18. Escudier B et al. (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356: 125–134

    Article  CAS  PubMed  Google Scholar 

  19. Bukowski RM et al. (2007) Final results of the randomized phase III trial of sorafenib in advanced renal cell carcinoma: survival and biomarker analysis [abstract #5023]. J Clin Oncol 25 (Suppl): S18

    Google Scholar 

  20. Chow LQ and Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. J Clin Oncol 25: 884–896

    Article  CAS  PubMed  Google Scholar 

  21. Motzer RJ et al. (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295: 2516–2524

    Article  CAS  PubMed  Google Scholar 

  22. Motzer RJ et al. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356: 115–124

    Article  CAS  PubMed  Google Scholar 

  23. George DJ et al. (2007) Phase II trial of sunitinib in bevacizumab-refractory metastatic renal cell carcinoma (mRCC): updated results and analysis of circulating biomarkers [abstract #5053]. J Clin Oncol 25 (Suppl): S18

    Google Scholar 

  24. Bjornsti MA and Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4: 335–348

    Article  CAS  PubMed  Google Scholar 

  25. Atkins MB et al. (2004) Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 22: 909–918

    Article  CAS  PubMed  Google Scholar 

  26. Hudes G et al. (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356: 2271–2281

    Article  CAS  PubMed  Google Scholar 

  27. Morgan B et al. (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21: 3955–3964

    Article  CAS  PubMed  Google Scholar 

  28. Kim WY and Kaelin WG Jr (2006) Molecular pathways in renal cell carcinoma—rationale for targeted treatment. Semin Oncol 33: 588–595

    Article  CAS  PubMed  Google Scholar 

  29. Ludwig JA and Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5: 845–856

    Article  CAS  PubMed  Google Scholar 

  30. Rüegg C et al. (2003) The quest for surrogate markers of angiogenesis: a paradigm for translational research in tumor angiogenesis and anti-angiogenesis trials. Curr Mol Med 3: 673–691

    Article  PubMed  Google Scholar 

  31. Davis DW et al. (2003) Surrogate markers in antiangiogenesis clinical trials. Br J Cancer 89: 8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhatt RS et al. (2007) Biomarkers for monitoring antiangiogenic therapy. Clin Cancer Res 13: S777–S780

    Article  Google Scholar 

  33. Poon RT et al. (2001) Clinical implications of circulating angiogenic factors in cancer patients. J Clin Oncol 19: 1207–1225

    Article  CAS  PubMed  Google Scholar 

  34. Jubb AM et al. (2006) Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 24: 217–227

    Article  CAS  PubMed  Google Scholar 

  35. Bocci G et al. (2004) Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res 64: 6616–6625

    Article  CAS  PubMed  Google Scholar 

  36. Willett CG et al. (2005) Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 23: 8136–8139

    Article  PubMed  Google Scholar 

  37. Zaman K et al. (2006) Monitoring multiple angiogenesis-related molecules in the blood of cancer patients shows a correlation between VEGF-A and MMP-9 levels before treatment and divergent changes after surgical vs conservative therapy. Int J Cancer 118: 755–764

    Article  CAS  PubMed  Google Scholar 

  38. Hlatky L et al. (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst 94: 883–893

    Article  PubMed  Google Scholar 

  39. Solorzano CC et al. (2001) In vivo intracellular signaling as a marker of antiangiogenic activity. Cancer Res 61: 7048–7051

    CAS  PubMed  Google Scholar 

  40. Bertolini F et al. (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6: 835–845

    Article  CAS  PubMed  Google Scholar 

  41. Mancuso P et al. (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97: 3658–3661

    Article  CAS  PubMed  Google Scholar 

  42. Shaked Y et al. (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106: 3058–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mancuso P et al. (2006) Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108: 452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beaudry P et al. (2005) Differential effects of vascular endothelial growth factor receptor-2 inhibitor ZD6474 on circulating endothelial progenitors and mature circulating endothelial cells: implications for use as a surrogate marker of antiangiogenic activity. Clin Cancer Res 11: 3514–3522

    Article  CAS  PubMed  Google Scholar 

  45. Norden-Zfoni A et al. (2007) Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clin Cancer Res 13: 2643–2650

    Article  CAS  PubMed  Google Scholar 

  46. Strumberg D et al. (2005) Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23: 965–972

    Article  CAS  PubMed  Google Scholar 

  47. Mittal V and Nolan DJ (2007) Genomics and proteomics approaches in understanding tumor angiogenesis. Expert Rev Mol Diagn 7: 133–147

    Article  CAS  PubMed  Google Scholar 

  48. St Croix B et al. (2000) Genes expressed in human tumor endothelium. Science 289: 1197–1202

    Article  CAS  PubMed  Google Scholar 

  49. Hardwick JS et al. (2005) Identification of biomarkers for tumor endothelial cell proliferation through gene expression profiling. Mol Cancer Ther 4: 413–425

    Article  CAS  PubMed  Google Scholar 

  50. Abe M and Sato Y (2001) cDNA microarray analysis of the gene expression profile of VEGF-activated human umbilical vein endothelial cells. Angiogenesis 4: 289–298

    Article  CAS  PubMed  Google Scholar 

  51. van Beijnum JR and Griffioen AW (2005) In silico analysis of angiogenesis associated gene expression identifies angiogenic stage related profiles. Biochim Biophys Acta 1755: 121–134

    CAS  PubMed  Google Scholar 

  52. Smirnov DA et al. (2006) Global gene expression profiling of circulating endothelial cells in patients with metastatic carcinomas. Cancer Res 66: 2918–2922

    Article  CAS  PubMed  Google Scholar 

  53. Rabascio C et al. (2004) Assessing tumor angiogenesis: increased circulating VE-cadherin RNA in patients with cancer indicates viability of circulating endothelial cells. Cancer Res 64: 4373–4377

    Article  CAS  PubMed  Google Scholar 

  54. DePrimo SE et al. (2003) Expression profiling of blood samples from an SU5416 phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker identification. BMC Cancer 3: 3

    Article  PubMed  PubMed Central  Google Scholar 

  55. Abdollahi A et al. (2004) Endostatin's antiangiogenic signaling network. Mol Cell 13: 649–663

    Article  CAS  PubMed  Google Scholar 

  56. Ayers M et al. (2007) Discovery and validation of biomarkers that respond to treatment with brivanib alaninate, a small-molecule VEGFR-2/FGFR-1 antagonist. Cancer Res 6: 6899–6906

    Article  CAS  Google Scholar 

  57. Mustafa DA et al. (2007) Identification of glioma neovascularization-related proteins by using MALDI-FTMS and nano-LC fractionation to microdissected tumor vessels. Mol Cell Proteomics 6: 1147–1157

    Article  CAS  PubMed  Google Scholar 

  58. Celis JE et al. (2004) Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics 3: 327–344

    Article  CAS  PubMed  Google Scholar 

  59. Bruneel A et al. (2003) Proteomic study of human umbilical vein endothelial cells in culture. Proteomics 3: 714–723

    Article  CAS  PubMed  Google Scholar 

  60. Pellitteri-Hahn MC et al. (2006) Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells. J Proteome Res 5: 2861–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Godl K et al. (2005) Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res 65: 6919–6926

    Article  CAS  PubMed  Google Scholar 

  62. Campostrini N et al. (2006) Proteomic analysis of anti-angiogenic effects by a combined treatment with vinblastine and rapamycin in an endothelial cell line. Proteomics 6: 4420–4431

    Article  CAS  PubMed  Google Scholar 

  63. Alessandro R et al. (2005) Proteomic approaches in colon cancer: promising tools for new cancer markers and drug target discovery. Clin Colorectal Cancer 4: 396–402

    Article  CAS  PubMed  Google Scholar 

  64. Pan S et al. (2005) High throughput proteome screening for biomarker detection. Mol Cell Proteomics 4: 182–190

    Article  CAS  PubMed  Google Scholar 

  65. Ocak I et al. (2007) The biologic basis of in vivo angiogenesis imaging. Front Biosci 12: 3601–3616

    Article  CAS  PubMed  Google Scholar 

  66. Provenzale JM (2007) Imaging of angiogenesis: clinical techniques and novel imaging methods. AJR Am J Roentgenol 188: 11–23

    Article  PubMed  Google Scholar 

  67. Cai W et al. (2006) How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 5: 2624–2633

    Article  CAS  PubMed  Google Scholar 

  68. Wintermark M et al. (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11: 1220–1230

    Article  CAS  PubMed  Google Scholar 

  69. Atri M (2006) New technologies and directed agents for applications of cancer imaging. J Clin Oncol 24: 3299–3308

    Article  PubMed  Google Scholar 

  70. Miller JC et al. (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97: 172–187

    Article  CAS  PubMed  Google Scholar 

  71. Rosen MA and Schnall MD (2007) Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res 13: S770–S776

    Article  Google Scholar 

  72. Leach MO et al. (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92: 1599–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7: 91–101

    Article  CAS  PubMed  Google Scholar 

  74. Miles KA (2003) Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol 76: S36–S42

    Article  PubMed  Google Scholar 

  75. Goh V et al. (2007) Quantitative tumor perfusion assessment with multidetector CT: are measurements from two commercial software packages interchangeable? Radiology 242: 777–782

    Article  PubMed  Google Scholar 

  76. Roberts HC et al. (2002) Dynamic, contrast-enhanced CT of human brain tumors: quantitative assessment of blood volume, blood flow, and microvascular permeability: report of two cases. AJNR Am J Neuroradiol 23: 828–832

    PubMed  PubMed Central  Google Scholar 

  77. Sahani DV et al. (2005) Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 234: 785–792

    Article  PubMed  Google Scholar 

  78. Raichle ME et al. (1983) Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med 24: 790–798

    CAS  PubMed  Google Scholar 

  79. Sadeghi N et al. (2006) Correlation between dynamic susceptibility contrast perfusion MRI and methionine metabolism in brain gliomas: preliminary results. J Magn Reson Imaging 24: 989–994

    Article  PubMed  Google Scholar 

  80. Padhani A (2006) PET imaging of tumour hypoxia. Cancer Imaging 6: S117–S121

    Article  PubMed  PubMed Central  Google Scholar 

  81. Phillips P and Gardner E (2004) Contrast-agent detection and quantification. Eur Radiol 14 (Suppl 8): S4–S10

    Google Scholar 

  82. Wei K et al. (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97: 473–483

    Article  CAS  PubMed  Google Scholar 

  83. Broillet A et al. (2005) Assessment of microvascular perfusion changes in a rat breast tumor model using SonoVue to monitor the effects of different anti-angiogenic therapies. Acad Radiol 12 (Suppl 1): S28–S33

    Article  PubMed  Google Scholar 

  84. Lucidarme O et al. (2006) Angiogenesis: noninvasive quantitative assessment with contrast-enhanced functional US in murine model. Radiology 239: 730–739

    Article  PubMed  Google Scholar 

  85. Lassau N et al. (2006) Prognostic value of angiogenesis evaluated with high-frequency and colour Doppler sonography for preoperative assessment of primary cutaneous melanomas: correlation with recurrence after a 5-year follow-up period. Cancer Imaging 6: 24–29

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lamuraglia M et al. (2006) To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur J Cancer 42: 2472–2479

    Article  CAS  PubMed  Google Scholar 

  87. Fury MG et al. (2007) A Phase II study of SU5416 in patients with advanced or recurrent head and neck cancers. Invest New Drugs 25: 165–172

    Article  CAS  PubMed  Google Scholar 

  88. Schirner M et al. (2004) Molecular imaging of tumor angiogenesis. Ann NY Acad Sci 1014: 67–75

    Article  CAS  PubMed  Google Scholar 

  89. Casanovas O et al. (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8: 299–309

    Article  CAS  PubMed  Google Scholar 

  90. Shaked Y et al. (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313: 1785–1787

    Article  CAS  PubMed  Google Scholar 

  91. Arditi M et al. (2006) A new formalism for the quantification of tissue perfusion by the destruction-replenishment method in contrast ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 53: 1118–1129

    Article  PubMed  Google Scholar 

  92. Dark GG et al. (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 57: 1829–1834

    CAS  PubMed  Google Scholar 

  93. Stevenson JP et al. (2003) Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 21: 4428–4438

    Article  CAS  PubMed  Google Scholar 

  94. Yang JC et al. (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349: 427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs F Bosman, A Mariotti, M Arditi and R Meuli for helpful comments and discussions, Dr JY Mewly for providing radiological images and R Driscoll for proofreading the manuscript. We apologize to those colleagues whose work could not be cited owing to space limitations. Our research activities are supported by grants from the Swiss National Science Foundation (SNF), Oncosuisse, the National Center for Competence in Research (NCCR, molecular Oncology, a research instrument of the SNF), the Medic Foundation and the Southern European New Drugs Organization (SENDO) Foundation. Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curzio Rüegg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sessa, C., Guibal, A., Del Conte, G. et al. Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations?. Nat Rev Clin Oncol 5, 378–391 (2008). https://doi.org/10.1038/ncponc1150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing