Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: emerging new drugs in the treatment of myelodysplastic syndromes

Abstract

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell disorders. Although the currently used classification schemes and prognostic algorithms, which are based predominantly on morphologic assessment of blood and marrow smears, have been shown to be valid for defining disease subgroups, they do not take into consideration the significant biological diversity of MDS. As the numerous pathophysiologic pathways that are involved in MDS are being unraveled, new molecular targets are being identified. Novel and targeted therapeutic agents, including inhibitors of farnesyltransferases and receptor tyrosine kinases, more potent thalidomide analogs and epigenetic therapies, have produced encouraging results and might offer durable benefits to patients with MDS. This review intends to provide a concise report on some of the most up-to-date therapies being investigated in MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heaney ML and Golde DW (1999) Myelodysplasia. N Engl J Med 340: 1649–1660

    Article  CAS  Google Scholar 

  2. Steensma DP and Tefferi A (2003) The myelodysplastic syndrome(s): a perspective and review highlighting current controversies. Leuk Res 27: 95–120

    Article  Google Scholar 

  3. Faderl S and Kantarjian HM (2004) Novel therapies for myelodysplastic syndromes. Cancer 101: 226–241

    Article  CAS  Google Scholar 

  4. Aul C et al. (1998) Increasing incidence of myelodysplastic syndromes: real or fictitious? Leuk Res 22: 93–100

    Article  CAS  Google Scholar 

  5. Germing U et al. (2004) No increase in age-specific incidence of myelodysplastic syndromes. Haematologica 89: 905–910

    PubMed  Google Scholar 

  6. Park DJ and Koeffler HP (1996) Therapy-related myelodysplastic syndromes. Semin Hematol 33: 256–273

    CAS  PubMed  Google Scholar 

  7. Estey EH (1998) Prognosis and therapy of secondary myelodysplastic syndromes. Haematologica 83: 543–549

    CAS  PubMed  Google Scholar 

  8. Albitar M et al. (2002) Myelodysplastic syndrome is not merely “preleukemia”. Blood 100: 791–798

    Article  CAS  Google Scholar 

  9. Rosenfeld C and List A (2000) A hypothesis for the pathogenesis of myelodysplastic syndromes: implications for new therapies. Leukemia 14: 2–8

    Article  CAS  Google Scholar 

  10. Mufti GJ (2004) Pathobiology, classification, and diagnosis of myelodsyplastic syndromes. Best Prac Res Clin Haematol 17: 543–557

    Article  Google Scholar 

  11. Barrett J et al. (2000) Myelodysplastic syndrome and aplastic anemia: distinct entities or diseases linked by a common pathophysiology? Semin Hematol 37: 15–29

    Article  CAS  Google Scholar 

  12. Allampallam K et al. (2001) Cytokines and MDS. Cancer Treat Res 108: 93–100

    Article  CAS  Google Scholar 

  13. Killick SB et al. (2003) A pilot study of antithymocyte globulin (ATG) in the treatment of patients with 'low-risk' myelodysplasia. Br J Haematol 120: 697–684

    Article  Google Scholar 

  14. Lancet JE and Karp JE (2003) Farnesyltransferase inhibitors in hematologic malignancies: new horizons in therapy. Blood 102: 3880–3889

    Article  CAS  Google Scholar 

  15. Hofmann W-K et al. (2002) Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 100: 3553–3560

    Article  CAS  Google Scholar 

  16. Giagounidis AA et al. (2004) The 5q- syndrome. Hematology 9: 271–277

    Article  CAS  Google Scholar 

  17. Bennett JM et al. (1982) Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51: 189–199

    Article  CAS  Google Scholar 

  18. Harris NJ et al. (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting, Airlie House, Virginia, November 1977. J Clin Oncol 17: 3835–3849

    Article  CAS  Google Scholar 

  19. Nösslinger T et al. (2001) Myelodysplastic syndromes, from French-American-British to World Health Organization: comparison of classification on 431 unselected patients from a single institution. Blood 98: 2935–2941

    Article  Google Scholar 

  20. Howe RB et al. (2004) The WHO classification of MDS does make a difference. Blood 103: 3265–3270

    Article  CAS  Google Scholar 

  21. Greenberg P et al. (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89: 2079–2088

    CAS  Google Scholar 

  22. [No authors listed] (1998) NCCN practice guidelines for the myelodysplastic syndromes. National Comprehensive Cancer Network. Oncology (Huntingt) 12: 53–80

  23. Aul C et al. (2002) Myelodysplastic syndromes. Diagnosis and therapeutic strategies. Med Klin (Munich) 97: 666–676

    Article  Google Scholar 

  24. List AF (2002) New approaches to the treatment of myelodysplasia. Oncologist 7 (Suppl 1): S39–S49

    Article  Google Scholar 

  25. Rowe JM (2004) State of the science for myelodysplastic syndrome: prognosis and promise of new therapies. Best Pract Res Clin Haematol 17: 535–541

    Article  Google Scholar 

  26. Cheson BD et al. (2000) Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood 96: 3671–3674

    CAS  PubMed  Google Scholar 

  27. Cheson BD et al. (2001) Myelodysplastic syndromes standardized response criteria: further definition. Blood 98: 1985

    Article  CAS  Google Scholar 

  28. Galustian C et al. (2004) Thalidomide-derived immunomodulatory drugs as therapeutic agents. Expert Opin Biol Ther 4: 1963–1970

    Article  CAS  Google Scholar 

  29. Mitsiades CS and Mitsiades N (2004) CC-5013 (Celgene). Curr Opin Investig Drugs 5: 635–647

    CAS  PubMed  Google Scholar 

  30. List A et al. (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352: 549–557

    Article  CAS  Google Scholar 

  31. List A et al. (2003) Efficacy and safety of CC5013 for treatment of anemia in patients with myelodysplastic syndromes (MDS) [abstract]. Blood 102: a184

    Article  Google Scholar 

  32. List A et al. (2003) Opportunities for Trisenox® (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia 17: 1499–1507

    Article  CAS  Google Scholar 

  33. Vey N (2004) Arsenic trioxide for the treatment of myelodysplastic syndromes. Expert Opin Pharmacother 5: 613–621

    Article  CAS  Google Scholar 

  34. Vey N et al. (2003) Trisenox® (arsenic trioxide) in patients with myelodysplastic syndromes (MDS): preliminary results of a phase 1/2 study [abstract]. Blood 102: a422

    Google Scholar 

  35. List AF et al. (2003) Trisenox® (arsenic trioxide) in patients with myelodysplastic syndromes (MDS): preliminary findings in a phase 2 clinical study [abstract]. Blood 102: a423

    Google Scholar 

  36. Raza A et al. (2004) Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res 28: 791–803

    Article  CAS  Google Scholar 

  37. Meng F et al. (2001) TLK199: a novel, small molecule myelostimulant [abstract]. Proc Amm Mtg Am Assoc Cancer Res 42: a214

    Google Scholar 

  38. Ruscoe JE et al. (2001) Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferation pathways. J Pharmacol Exp Ther 298: 339–345

    CAS  PubMed  Google Scholar 

  39. Faderl S et al. (2003) Hematologic improvement following treatment with TLK199 (a novel glutathione analog inhibitor of GST P1-1) in myelodysplastic syndrome (MDS): interim results of a phase 1-2a study [abstract]. Blood 102 (Suppl 1): aS426

    Google Scholar 

  40. Callander N et al. (2004) Hematologic improvement following treatment with TLK199 (Telintra™), a novel glutathione analog inhibitor of GST P1-1, in myelodysplastic syndrome (MDS): interim results of a dose-ranging phase 2a study [abstract]. Blood 104: a400

    Google Scholar 

  41. Santini V et al. (2001) Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 134: 573–586

    Article  CAS  Google Scholar 

  42. Issa JP et al. (1997) DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 11 (Suppl 1): S7–S11

    PubMed  Google Scholar 

  43. Daskalakis M et al. (2002) Demethylation of a hypomethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2'-deoxycytidine (decitabine) treatment. Blood 100: 2957–2964

    Article  CAS  Google Scholar 

  44. Silverman LR et al. (1994) 5-azacytidine in myelodysplastic syndromes (MDS): the experience at Mount Sinai Hospital, New York. Leuk Res 18: 21

    Article  Google Scholar 

  45. Silverman L et al. (1994) Azacytidine (azaC) in myelodysplastic syndromes (MDS); CALGB 8421 and 8921 [abstract]. Ann Hematol 68: a12

    Google Scholar 

  46. Silverman LR et al. (2002) Randomized controlled trial of azacytidine in patients with the myelodysplastic syndrome: a study of the Cancer and Leukemia Group B. J Clin Oncol 20: 2429–2440

    Article  CAS  Google Scholar 

  47. Kornblith AB et al. (2002) Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a Cancer and Leukemia Group B study. J Clin Oncol 20: 2441–2452

    Article  CAS  Google Scholar 

  48. DeSimone J et al. (2002) Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. Blood 99: 3905–3908

    Article  CAS  Google Scholar 

  49. Koshy M et al. (2000) 2-deoxy-5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood 96: 2379–2384

    CAS  PubMed  Google Scholar 

  50. Wijermans P et al. (2000) Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18: 956–962

    Article  CAS  Google Scholar 

  51. Wijermans PW et al. (2002) Low dose decitabine for elderly high risk MDS patients: who will respond? [abstract] Blood 100: a96

    Article  Google Scholar 

  52. Kantarjian HM et al. (2004) Decitabine low-dose schedule (100 mg/m2/course) in myelodysplastic syndrome (MDS) [abstract]. Blood 104: a402

    Article  Google Scholar 

  53. Issa J-P et al. (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103: 1635–1640

    Article  CAS  Google Scholar 

  54. Saba H et al. (2004) First report of the phase III North American Trial of decitabine in advanced myelodysplastic syndrome (MDS) [abstract]. Blood 104: a23

    Google Scholar 

  55. Garcia-Manero G et al. (2004) Results of a phase I/II study of the combination of 5-aza-2'-deoxycytidine (DAC) and valproic acid (VPA) in patients (pts) with leukaemia [abstract]. Blood 104: a78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Faderl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faderl, S., Kantarjian, H. Drug Insight: emerging new drugs in the treatment of myelodysplastic syndromes. Nat Rev Clin Oncol 2, 348–355 (2005). https://doi.org/10.1038/ncponc0224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0224

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing