Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis

Abstract

Considerable interest has been shown in the potential anti-inflammatory effects of polyunsaturated fatty acids (PUFAs) in multiple sclerosis (MS) and other autoimmune inflammatory disorders. Studies suggest a modest association between consumption of low levels of unsaturated fat and an increased incidence of MS. Moreover, in vitro and in vivo studies have demonstrated that omega-3 and omega-6 PUFA supplementation can reduce immune-cell activation via a number of complex pathways. Noncontrolled and controlled clinical trials of PUFA supplementation in patients with MS have, however, provided mixed results. These studies had important limitations in design and selection of outcome measures, and these factors might partially explain the inconsistent results. We propose that the potential role of PUFAs as disease-modifying, anti-inflammatory treatments for MS should be revisited in proof-of-concept trials that use accepted MRI outcome measures.

Key Points

  • Epidemiological studies demonstrate an association between saturated fat intake and the incidence of multiple sclerosis (MS)

  • In vivo studies demonstrate that polyunsaturated fatty acids (PUFAs) can exert anti-inflammatory effects through multiple, complex mechanisms

  • Controlled and noncontrolled trials have produced mixed results regarding the efficacy of PUFAs in MS; however, these trials have several limitations that could partially explain the lack of a treatment effect

  • Despite the lack of definitive evidence that PUFAs can be beneficial in MS, the anti-inflammatory potential of these agents is intriguing

  • The potential role of PUFAs as a treatment for MS should be further explored in proof-of-concept studies that use MRI-based outcome measures

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Omega-6 and omega-3 PUFAs and their respective sources and metabolic derivatives.

Similar content being viewed by others

References

  1. Sastre-Garriga J et al. (2003) Unconventional therapy in multiple sclerosis. Mult Scler 9: 320–322

    Article  PubMed  Google Scholar 

  2. Rothman D et al. (1995) Botanical lipids: effects on inflammation, immune responses, and rheumatoid arthritis. Semin Arthritis Rheum 25: 87–96

    Article  CAS  PubMed  Google Scholar 

  3. Kankaanpaa P et al. (1999) Dietary fatty acids and allergy. Ann Med 31: 282–287

    Article  CAS  PubMed  Google Scholar 

  4. Mayer M (1999) Essential fatty acids and related molecular and cellular mechanisms in multiple sclerosis: new looks at old concepts. Folia Biol (Praha) 45: 133–141

    CAS  Google Scholar 

  5. Zamaria N (2004) Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod Nutr Dev 44: 273–282

    Article  CAS  PubMed  Google Scholar 

  6. Stewart TM and Bowling AC (2005) Polyunsaturated fatty acid supplementation in MS. Int MS J 12: 88–93

    CAS  PubMed  Google Scholar 

  7. van Meeteren ME et al. (2005) Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 59: 1347–1361

    Article  CAS  PubMed  Google Scholar 

  8. Schwarz S et al. (2008) Complementary and alternative medicine for multiple sclerosis. Mult Scler 14: 1113–1119

    Article  CAS  PubMed  Google Scholar 

  9. Galli C and Marangoni F (1997) Recent advances in the biology of n-6 fatty acids. Nutrition 13: 978–985

    Article  CAS  PubMed  Google Scholar 

  10. Willett WC (1998) Overview of nutritional epidemiology. In Nutritional Epidemiology, 3–17 (Ed Willett WC) New York: Oxford University Press

    Chapter  Google Scholar 

  11. Esparza ML et al. (1995) Nutrition, latitude, and multiple sclerosis mortality: an ecologic study. Am J Epidemiol 142: 733–737

    Article  CAS  PubMed  Google Scholar 

  12. Lauer K (1994) The risk of multiple sclerosis in the U.S.A. in relation to sociogeographic features: a factor-analytic study. J Clin Epidemiol 47: 43–48

    Article  CAS  PubMed  Google Scholar 

  13. Westlund KB and Kurland LT (1953) Studies on multiple sclerosis in Winnepeg, Manitoba, and New Orleans, Louisiana. I. prevalence; comparison between the patient groups in Winnipeg and New Orleans. Am J Hyg 57: 380–396

    CAS  PubMed  Google Scholar 

  14. Cendrowski W et al. (1969) Epidemiological study of multiple sclerosis in western Poland. Eur Neurol 2: 90–108

    Article  CAS  PubMed  Google Scholar 

  15. Tola MR et al. (1994) Dietary habits and multiple sclerosis. a retrospective study in Ferrara, Italy. Acta Neurol (Napoli) 16: 189–197

    CAS  Google Scholar 

  16. Gusev E et al. (1996) Environmental risk factors in MS: a case–control study in Moscow. Acta Neurol Scand 94: 386–394

    Article  CAS  PubMed  Google Scholar 

  17. Ghadirian P et al. (1998) Nutritional factors in the aetiology of multiple sclerosis: a case–control study in Montreal, Canada. Int J Epidemiol 27: 845–852

    Article  CAS  PubMed  Google Scholar 

  18. Kampman MT et al. (2007) Outdoor activities and diet in childhood and adolescence relate to MS risk above the Arctic Circle. J Neurol 254: 471–477

    Article  CAS  PubMed  Google Scholar 

  19. Hayes CE et al. (2003) The immunological functions of the vitamin D endocrine system. Cell Mol Biol (Noisy-le-Grand) 49: 277–300

    CAS  Google Scholar 

  20. Munger KL et al. (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62: 60–65

    Article  CAS  PubMed  Google Scholar 

  21. Munger KL et al. (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296: 2832–2838

    Article  CAS  PubMed  Google Scholar 

  22. Zhang SM et al. (2000) Dietary fat in relation to risk of multiple sclerosis among two large cohorts of women. Am J Epidemiol 152: 1056–1064

    Article  CAS  PubMed  Google Scholar 

  23. Koch M et al. (2006) Erythrocyte membrane fatty acids in benign and progressive forms of multiple sclerosis. J Neurol Sci 244: 123–126

    Article  CAS  PubMed  Google Scholar 

  24. Gul S et al. (1970) Fatty acid composition of phospholipids from platelets and erythrocytes in multiple sclerosis. J Neurol Neurosurg Psychiatry 33: 506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fisher M et al. (1987) Linoleic acid levels in white blood cells, platelets, and serum of multiple sclerosis patients. Acta Neurol Scand 76: 241–245

    Article  CAS  PubMed  Google Scholar 

  26. Wilson R and Tocher DR (1991) Lipid and fatty acid composition is altered in plaque tissue from multiple sclerosis brain compared with normal brain white matter. Lipids 26: 9–15

    Article  CAS  PubMed  Google Scholar 

  27. Callegari PE and Zurier RB (1991) Botanical lipids: potential role in modulation of immunologic responses and inflammatory reactions. Rheum Dis Clin North Am 17: 415–425

    CAS  PubMed  Google Scholar 

  28. Gil A (2002) Polyunsaturated fatty acids and inflammatory diseases. Biomed Pharmacother 56: 388–396

    Article  CAS  PubMed  Google Scholar 

  29. Namazi MR (2004) The beneficial and detrimental effects of linoleic acid on autoimmune disorders. Autoimmunity 37: 73–75

    Article  CAS  PubMed  Google Scholar 

  30. Mertin J et al. (1984) Prostaglandins and cell-mediated immunity. The role of prostaglandin E1 in the induction of host-versus-graft and graft-versus-host reactions in mice. Transplantation 37: 396–402

    Article  CAS  PubMed  Google Scholar 

  31. Mertin J et al. (1985) Nutrition and immunity: the immunoregulatory effect of n-6 essential fatty acids is mediated through prostaglandin E. Int Arch Allergy Appl Immunol 77: 390–395

    Article  CAS  PubMed  Google Scholar 

  32. Santoli D and Zurier RB (1989) Prostaglandin E precursor fatty acids inhibit human IL-2 production by a prostaglandin E-independent mechanism. J Immunol 143: 1303–1309

    CAS  PubMed  Google Scholar 

  33. Rossetti RG et al. (1997) Oral administration of unsaturated fatty acids: effects on human peripheral blood T lymphocyte proliferation. J Leukoc Biol 62: 438–443

    Article  CAS  PubMed  Google Scholar 

  34. Endres S et al. (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320: 265–271

    Article  CAS  PubMed  Google Scholar 

  35. Gallai V et al. (1995) Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n-3 polyunsaturated fatty acids. J Neuroimmunol 56: 143–153

    Article  CAS  PubMed  Google Scholar 

  36. DeLuca P et al. (1999) Effects of gammalinolenic acid on interleukin-1 beta and tumor necrosis factor-alpha secretion by stimulated human peripheral blood monocytes: studies in vitro and in vivo. J Investig Med 47: 246–250

    CAS  PubMed  Google Scholar 

  37. Ferrante A et al. (1994) Neutrophil migration inhibitory properties of polyunsaturated fatty acids. The role of fatty acid structure, metabolism, and possible second messenger systems. J Clin Invest 93: 1063–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yacoubian S and Serhan CN (2007) New endogenous anti-inflammatory and proresolving lipid mediators: implications for rheumatic diseases. Nat Clin Pract Rheumatol 3: 570–579

    Article  CAS  PubMed  Google Scholar 

  39. Serhan CN et al. (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196: 1025–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Serhan CN et al. (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat 73: 155–172

    Article  CAS  PubMed  Google Scholar 

  41. Serhan CN et al. (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8: 349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong S et al. (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278: 14677–14687

    Article  CAS  PubMed  Google Scholar 

  43. Serhan CN et al. (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39: 1125–1132

    Article  CAS  PubMed  Google Scholar 

  44. Feige JN et al. (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45: 120–159

    Article  CAS  PubMed  Google Scholar 

  45. Edwards IJ and O'Flaherty JT (2008) Omega-3 fatty acids and PPARγ in cancer. PPAR Res 2008: 358052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bordoni A et al. (2006) Polyunsaturated fatty acids: from diet to binding to PPARs and other nuclear receptors. Genes Nutr 1: 95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calder PC (2008) Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 52: 885–897

    Article  CAS  PubMed  Google Scholar 

  48. Schmitz G and Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47: 147–155

    Article  CAS  PubMed  Google Scholar 

  49. Niino M et al. (2001) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by an agonist of peroxisome proliferator-activated receptor-γ. J Neuroimmunol 116: 40–48

    Article  CAS  PubMed  Google Scholar 

  50. Diab A et al. (2002) Peroxisome proliferator-activated receptor-γ agonist 15-deoxy-δ12,14-prostaglandin J2 ameliorates experimental autoimmune encephalomyelitis. J Immunol 168: 2508–2515

    Article  CAS  PubMed  Google Scholar 

  51. Feinstein DL et al. (2002) Peroxisome proliferator-activated receptor-γ agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51: 694–702

    Article  CAS  PubMed  Google Scholar 

  52. Heneka MT et al. (2007) Drug insight: effects mediated by peroxisome proliferator-activated receptor-γ in CNS disorders. Nat Clin Pract Neurol 3: 496–504

    Article  CAS  PubMed  Google Scholar 

  53. Ghosh S et al. (1998) NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260

    Article  CAS  PubMed  Google Scholar 

  54. Hayden MS et al. (2006) NF-κB and the immune response. Oncogene 25: 6758–6780

    Article  CAS  PubMed  Google Scholar 

  55. Ghosh S and Hayden MS (2008) New regulators of NF-κB in inflammation. Nat Rev Immunol 8: 837–848

    Article  CAS  PubMed  Google Scholar 

  56. Novak TE et al. (2003) NF-κB inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-α transcription. Am J Physiol Lung Cell Mol Physiol 284: L84–L89

    Article  CAS  PubMed  Google Scholar 

  57. Salvati S et al. (2008) Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J Neurosci Res 86: 776–784

    Article  CAS  PubMed  Google Scholar 

  58. Harris MA et al. (2001) Effects of conjugated linoleic acids and docosahexaenoic acid on rat liver and reproductive tissue fatty acids, prostaglandins and matrix metalloproteinase production. Prostaglandins Leukot Essent Fatty Acids 65: 23–29

    Article  CAS  PubMed  Google Scholar 

  59. Liuzzi GM et al. (2007) Inhibitory effect of polyunsaturated fatty acids on MMP-9 release from microglial cells—implications for complementary multiple sclerosis treatment. Neurochem Res 32: 2184–2193

    Article  CAS  PubMed  Google Scholar 

  60. Meade CJ et al. (1978) Reduction by linoleic acid of the severity of experimental allergic encephalomyelitis in the guinea pig. J Neurol Sci 35: 291–308

    Article  CAS  PubMed  Google Scholar 

  61. Hughes D et al. (1980) Linoleic acid therapy in severe experimental allergic encephalomyelitis in the guinea-pig: suppression by continuous treatment. Clin Exp Immunol 40: 523–531

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Harbige LS et al. (1995) Prevention of experimental autoimmune encephalomyelitis in Lewis rats by a novel fungal source of γ-linolenic acid. Br J Nutr 74: 701–715

    Article  CAS  PubMed  Google Scholar 

  63. Harbige LS et al. (2000) The protective effects of omega-6 fatty acids in experimental autoimmune encephalomyelitis (EAE) in relation to transforming growth factor-beta 1 (TGF-β1) up-regulation and increased prostaglandin E2 (PGE2) production. Clin Exp Immunol 122: 445–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Racke MK et al. (1991) Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-β1. J Immunol 146: 3012–3017

    CAS  PubMed  Google Scholar 

  65. Swank RL (1955) Treatment of multiple sclerosis with low-fat diet; results of five and one-half years' experience. AMA Arch Neurol Psychiatry 73: 631–644

    Article  CAS  PubMed  Google Scholar 

  66. Swank RL (1956) Treatment of multiple sclerosis with low-fat diet: result of seven years' experience. Ann Intern Med 45: 812–824

    Article  CAS  PubMed  Google Scholar 

  67. Swank RL (1970) Multiple sclerosis: twenty years on low fat diet. Arch Neurol 23: 460–474

    Article  CAS  PubMed  Google Scholar 

  68. Swank RL and Dugan BB (1990) Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet 336: 37–39

    Article  CAS  PubMed  Google Scholar 

  69. Swank RL and Goodwin J (2003) Review of MS patient survival on a Swank low saturated fat diet. Nutrition 19: 161–162

    Article  CAS  PubMed  Google Scholar 

  70. Cendrowski W (1986) Multiple sclerosis and MaxEPA. Br J Clin Pract 40: 365–367

    CAS  PubMed  Google Scholar 

  71. Nordvik I et al. (2000) Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurol Scand 102: 143–149

    Article  CAS  PubMed  Google Scholar 

  72. Farinotti M et al. (2007) Dietary interventions for multiple sclerosis. Cochrane Database of Systematic Reviews 2007, Issue 1. Art. No.:CD004192. 10.1002/14651858.CD004192.pub2

  73. Millar JH et al. (1973) Double-blind trial of linoleate supplementation of the diet in multiple sclerosis. Br Med J 1: 765–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kurtzke JF (1961) On the evaluation of disability in multiple sclerosis. Neurology 11: 686–694

    Article  CAS  PubMed  Google Scholar 

  75. Millar JH et al. (1967) Long-term treatment of multiple sclerosis with corticotrophin. Lancet 2: 429–431

    Article  CAS  PubMed  Google Scholar 

  76. Bates D et al. (1977) Trial of polyunsaturated fatty acids in non-relapsing multiple sclerosis. Br Med J 2: 932–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bates D et al. (1978) Polyunsaturated fatty acids in treatment of acute remitting multiple sclerosis. Br Med J 2: 1390–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kurtzke JF (1965) Further notes on disability evaluation in multiple sclerosis, with scale modifications. Neurology 15: 654–661

    Article  CAS  PubMed  Google Scholar 

  79. Paty DW et al. (1978) Linoleic acid in multiple sclerosis: failure to show any therapeutic benefit. Acta Neurol Scand 58: 53–58

    Article  CAS  PubMed  Google Scholar 

  80. Paty DW (1983) Double-blind trial of linoleic acid in multiple sclerosis. Arch Neurol 40: 693–694

    Article  CAS  PubMed  Google Scholar 

  81. Dworkin RH et al. (1984) Linoleic acid and multiple sclerosis: a reanalysis of three double-blind trials. Neurology 34: 1441–1445

    Article  CAS  PubMed  Google Scholar 

  82. Bates D et al. (1989) A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry 52: 18–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weinstock-Guttman B et al. (2005) Low fat dietary intervention with omega-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot Essent Fatty Acids 73: 397–404

    Article  CAS  PubMed  Google Scholar 

  84. Harbige LS et al. (2008) Polyunsaturated fatty acids in the pathogenesis and treatment of multiple sclerosis. Proc Nutr Soc 67: E21

    Article  Google Scholar 

  85. Goodin DS (2004) Disease-modifying therapy in MS: a critical review of the literature. Part I: analysis of clinical trial errors. J Neurol 251 (Suppl 5): v3–v11

    Article  PubMed  Google Scholar 

  86. Martinez-Yelamos S et al. (2006) Regression to the mean in multiple sclerosis. Mult Scler 12: 826–829

    Article  CAS  PubMed  Google Scholar 

  87. Brunelleschi S et al. (2007) Minor polar compounds extra-virgin olive oil extract (MPC-OOE) inhibits NF-κB translocation in human monocyte/macrophages. Pharmacol Res 56: 542–549

    Article  CAS  PubMed  Google Scholar 

  88. Falcetti E et al. (2007) IP receptor-dependent activation of PPARγ by stable prostacyclin analogues. Biochem Biophys Res Commun 360: 821–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martinez-Gonzalez J et al. (2008) Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. J Nutr 138: 443–448

    Article  CAS  PubMed  Google Scholar 

  90. Bates EJ et al. (1993) Polyunsaturated fatty acids increase neutrophil adherence and integrin receptor expression. J Leukoc Biol 53: 420–426

    Article  CAS  PubMed  Google Scholar 

  91. Harbige LS (2003) Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38: 323–341

    Article  CAS  PubMed  Google Scholar 

  92. McFarland HF et al. (2002) The role of MRI as a surrogate outcome measure in multiple sclerosis. Mult Scler 8: 40–51

    Article  CAS  PubMed  Google Scholar 

  93. Simon JH (2003) Measures of gadolinium enhancement in multiple sclerosis. In Multiple Sclerosis Therapeutics, Edn. 2, 97–124 (Eds Cohen JA and Rudick RA) London: Martin Dunitz

    Google Scholar 

  94. Sormani MP et al. (2001) Clinical trials of multiple sclerosis monitored with enhanced MRI: new sample size calculations based on large data sets. J Neurol Neurosurg Psychiatry 70: 494–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors dedicate this article to the memory of Steven R Schwid, whose unparalleled commitment to the care of patients with multiple sclerosis and to discovering improved treatments for this disorder is an enduring inspiration.LR Mehta is supported by a Sylvia Lawry Physician Fellowship Award from the National Multiple Sclerosis Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahar R Mehta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mehta, L., Dworkin, R. & Schwid, S. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat Rev Neurol 5, 82–92 (2009). https://doi.org/10.1038/ncpneuro1009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro1009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing