Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The mortality and morbidity of febrile seizures

Abstract

Approaches to the treatment and investigation of febrile seizures have changed since the main reference studies on outcomes were conducted in the 1960s and 1970s. We have, therefore, conducted a systematic review of literature from the past 15 years to see whether outcomes have also changed. We found that simple febrile seizures do not carry a risk of death, but there is a very small risk of death after complex febrile seizures (CFSs), particularly febrile status epilepticus. There is no evidence that SUDEP (sudden unexpected death in epilepsy) occurs in association with febrile seizures. The risk of later epilepsy after a febrile seizure lies between 2.0% and 7.5%, and the risk of developing epilepsy after CFSs is estimated at around 10–20%. There is no evidence of any risk of hippocampal or mesial temporal sclerosis (HS/MTS) in association with simple febrile seizures. Serial imaging has shown that HS/MTS develops in 0–25% of patients over time after prolonged febrile seizures; the range in prevalence reflects selection bias in different studies. The overall risk of HS/MTS associated with CFSs is around 3%. Approximately 40% of patients with medically refractory temporal lobe epilepsy and HS/MTS on neuroimaging have a history of febrile seizures.

Key Points

  • Simple febrile seizures are not associated with notable mortality or risk of hippocampal changes, and these seizures carry only a small risk of subsequent epilepsy

  • Complex febrile seizures are associated with a small increase in the risk of death and with a higher risk of development of subsequent epilepsy compared with simple febrile seizures

  • Hippocampal sclerosis or mesial temporal sclerosis can develop after FSE, but the risk such development is probably low

  • MRI abnormalities are common in the aftermath of FSE, but most of these abnormalities are largely attributable to reversible—possibly edematous—changes in the hippocampus; only a small proportion of cases evolve to hippocampal sclerosis

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Hauser WA and Kurland LT (1975) The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia 16: 1–66

    CAS  Article  PubMed  Google Scholar 

  2. Nelson KB and Ellenberg JH (1976) Predictors of epilepsy in children who have experienced febrile seizures. N Engl J Med 295: 1029–1033

    CAS  PubMed  Google Scholar 

  3. Annegers JF et al. (1979) The risk of epilepsy following febrile convulsions. Neurology 29: 297–303

    CAS  PubMed  Google Scholar 

  4. Shinnar S and Glauser TA (2002) Febrile seizures. J Child Neurol 17 (Suppl 1): S44–S52

    PubMed  Google Scholar 

  5. Aicardi J and Chevrie JJ (1970) Convulsive status epilepticus in infants and children: a study of 239 cases. Epilepsia 11: 187–197

    CAS  PubMed  Google Scholar 

  6. Nelson KB and Ellenberg JH (1978) Prognosis in children with febrile seizures. Pediatrics 61: 720–727

    CAS  PubMed  Google Scholar 

  7. Obi JO et al. (1994) Childhood febrile seizures (Benin City experience). Ann Trop Paediatr 14: 211–214

    CAS  PubMed  Google Scholar 

  8. Nadel S et al. (1999) Emergency cranial computed tomography in the management of acute febrile encephalopathy in children. J Accid Emerg Med 16: 403–406

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Asadi-Pooya AA and Poordast A (2005) Etiologies and outcomes of status epilepticus in children. Epilepsy Behav 7: 502–505

    PubMed  Google Scholar 

  10. Maegaki Y et al. (2005) Risk factors for fatality and neurological sequelae after status epilepticus in children. Neuropediatrics 36: 186–192

    CAS  PubMed  Google Scholar 

  11. Pavone L et al. (1993) Febrile and afebrile convulsions: a clinical follow-up. Childs Nerv Syst 9: 154–156

    CAS  PubMed  Google Scholar 

  12. Laditan AAO (1994) Seizure recurrence after a first febrile convulsion. Ann Trop Paediatr 14: 303–308

    CAS  PubMed  Google Scholar 

  13. Kjeldsen MJ et al. (2002) Genetic and environmental factors in febrile seizures: a Danish population-based twin study. Epilepsy Res 51: 167–177

    PubMed  Google Scholar 

  14. Vestergaard M et al. (2007) The long-term risk of epilepsy after febrile seizure in susceptible subgroups. Am J Epidemiol 165: 911–918

    PubMed  Google Scholar 

  15. van Esch A et al. (1996) Outcome after febrile status epilepticus. Dev Med Child Neurol 38: 19–24

    CAS  PubMed  Google Scholar 

  16. Sapir D et al. (2000) Unprovoked seizures after complex febrile convulsions. Brain Dev 22: 484–486

    CAS  PubMed  Google Scholar 

  17. Metsäranta P et al. (2004) Outcome after prolonged convulsive seizures in 186 children: low morbidity, no mortality. Dev Med Child Neurol 46: 4–8

    PubMed  Google Scholar 

  18. Yücel O et al. (2004) Role of early EEG and neuroimaging in determination of prognosis in children with complex febrile seizures. Pediatr Int 46: 463–467

    PubMed  Google Scholar 

  19. Hussain N et al. (2007) Aetiology, course and outcome of children admitted to paediatric intensive care with convulsive status epilepticus: a retrospective 5-year review. Seizure 16: 305–312

    PubMed  Google Scholar 

  20. van den Berg BJ and Yerushalmy J (1969) Studies on convulsive disorders in young children: Incidence of febrile and nonfebrile convulsions by age and other factors. Pediatr Res 3: 298–304

    Google Scholar 

  21. Janszky J et al. (2004) Age at onset in mesial temporal lobe epilepsy with a history of febrile seizures. Neurology 63: 1296–1298

    PubMed  Google Scholar 

  22. VanLandingham KE et al. (1998) Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 43: 413–426

    CAS  PubMed  Google Scholar 

  23. Szabó CÁ et al. (1999) Hippocampal volumetry in children 6 years or younger: assessment of children with and without complex febrile seizures. Epilepsy Res 33: 1–9

    PubMed  Google Scholar 

  24. Grünewald RA et al. (2001) A magnetic resonance study of complicated early childhood convulsion. J Neurol Neurosurg Psychiatry 71: 638–642

    PubMed  PubMed Central  Google Scholar 

  25. Scott RC et al. (2002) Magnetic resonance imaging findings within 5 days of status epilepticus in childhood. Brain 125: 1951–1959

    PubMed  Google Scholar 

  26. Natsume J et al. (2007) Hippocampal volumes and diffusion-weighted image findings in children with prolonged febrile seizures. Acta Neurol Scand 115: 25–28

    CAS  PubMed  Google Scholar 

  27. Tarkka R et al. (2003) Febrile seizures and mesial temporal sclerosis, no association in a long-term follow-up study. Neurology 60: 215–218

    CAS  PubMed  Google Scholar 

  28. Scott RC et al. (2003) Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. Brain 126: 2551–2557

    PubMed  Google Scholar 

  29. Scott RC et al. (2006) Prolonged febrile seizures are associated with hippocampal vasogenic edema and developmental changes. Epilepsia 47: 1493–1498

    PubMed  Google Scholar 

  30. Farrow TFD et al. (2006) A six-year follow-up MRI study of complicated early childhood convulsion. Pediatr Neurol 35: 257–260

    PubMed  Google Scholar 

  31. Ng YT et al. (2006) Childhood mesial temporal sclerosis. J Child Neurol 21: 512–517

    PubMed  Google Scholar 

  32. Verity CM et al. (1993) Outcome of childhood status epilepticus and lengthy febrile convulsions: findings of national cohort study. BMJ 307: 225–228

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lacroix J et al. (1994) Admissions to a pediatric intensive care unit for status epilepticus: a 10-year experience. Crit Care Med 22: 827–832

    CAS  PubMed  Google Scholar 

  34. Cockerell OC et al. (1994) Mortality from epilepsy: results from a prospective population based study. Lancet 344: 918–921

    CAS  PubMed  Google Scholar 

  35. Scholtes FB et al. (1996) Status epilepticus in children. Seizure 5: 177–184

    CAS  PubMed  Google Scholar 

  36. Eriksson KJ and Koivikko MJ (1997) Status epilepticus in children: aetiology, treatment, and outcome. Dev Med Child Neurol 39: 652–658

    CAS  PubMed  Google Scholar 

  37. Logroscino G et al. (1997) Short-term mortality after a first episode of status epilepticus. Epilepsia 38: 1344–1349

    CAS  PubMed  Google Scholar 

  38. MacDonald BK et al. (1999) Febrile convulsions in 220 children-neurological sequelae at 12 years follow-up. Eur Neurol 41: 179–186

    CAS  PubMed  Google Scholar 

  39. Mah JK and Mah MW (1999) Pediatric status epilepticus: a perspective from Saudi Arabia. Pediatr Neurol 20: 364–369

    CAS  PubMed  Google Scholar 

  40. Maharshak N and Somekh E (1999) Hospitalization for varicella in central Israel. Acta Paediatr 88: 1279–1283

    CAS  PubMed  Google Scholar 

  41. Barnard C and Wirrell E (1999) Does status epilepticus in children cause developmental deterioration and exacerbation of epilepsy. J Child Neurol 14: 787–794

    CAS  PubMed  Google Scholar 

  42. Lahat E et al. (2000) Comparison of intranasal midazolam with intravenous diazepam for treating febrile seizures in children: prospective randomised study. BMJ 321: 83–86

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Patja A et al. (2000) Serious adverse events after measles–mumps–rubella vaccination during a fourteen-year prospective follow-up. Pediatr Infect Dis J 19: 1127–1134

    CAS  PubMed  Google Scholar 

  44. Shinnar S et al. (2001) Short-term outcomes of children with febrile status epilepticus. Epilepsia 42: 47–53

    CAS  PubMed  Google Scholar 

  45. Kjaergaard S et al. (2001) Congenital disorder of glycosylation type 1a (CDG- 1a): phenotypic spectrum of the R141H/F119L genotype. Arch Dis Child 85: 236–239

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rainbow J et al. (2002) Controlling seizures in the prehospital setting: diazepam or midazolam. J Paediatr Child Health 38: 582–586

    CAS  PubMed  Google Scholar 

  47. Verrotti A et al. (2004) Intermittent oral diazepam prophylaxis in febrile convulsions: its effectiveness for febrile seizure recurrence. Eur J Paediatr Neurol 8: 131–134

    PubMed  Google Scholar 

  48. Chin RF et al. (2006) Incidence, cause, and short-term outcome of convulsive status epilepticus in childhood: prospective population-based study. Lancet 368: 222–229

    PubMed  Google Scholar 

  49. Schanzer DL et al. (2006) Hospitalization attributable to influenza and other viral respiratory illnesses in Canadian children. Pediatr Infect Dis J 25: 795–800

    PubMed  Google Scholar 

  50. Takanashi J et al. (2006) Diffusion MRI abnormalities after prolonged febrile seizures with encephalopathy. Neurology 66: 1304–1309

    CAS  PubMed  Google Scholar 

  51. Newland JG et al. (2007) Neurological complications in children hospitalized with influenza: characteristics, incidence, and risk factors. J Pediatr 150: 306–310

    PubMed  Google Scholar 

  52. Nishiyama I et al. (2007) An epidemiological study of children with status epilepticus in Okayama, Japan. Epilepsia 48: 1133–1137

    PubMed  Google Scholar 

  53. Rosman NP et al. (1993) A controlled trial of diazepam administered during febrile illnesses to prevent recurrence of febrile seizures. N Engl J Med 329: 79–84

    CAS  PubMed  Google Scholar 

  54. Tsai ML and Hung KL (1995) Risk factors for subsequent epilepsy after febrile convulsions. J Formos Med Assoc 94: 327–331

    CAS  PubMed  Google Scholar 

  55. Nevo Y et al. (1995) Unprovoked seizures and developmental disabilities: clinical characteristics of children referred to a child development center. Pediatr Neurol 13: 235–241

    CAS  PubMed  Google Scholar 

  56. Miyake S et al. (1996) Follow-up study of children with a history of a febrile convulsion. Epilepsia 37 (Suppl 3): S72–S73

    Google Scholar 

  57. Knudsen FU et al. (1996) Long term outcome of prophylaxis for febrile convulsions. Arch Dis Child 74: 13–18

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Forsgren L et al. (1997) A follow-up of an incident case-referent study of febrile convulsions seven years after the onset. Seizure 6: 21–26

    CAS  PubMed  Google Scholar 

  59. Hackett R et al. (1997) Febrile seizures in a South Indian district: incidence and associations. Dev Med Child Neurol 39: 380–384

    CAS  PubMed  Google Scholar 

  60. Tarkka R et al. (1998) Risk of recurrence and outcome after the first febrile seizure. Neurology 18: 218–220

    CAS  Google Scholar 

  61. Berg AT et al. (1998) Seizures with fever after unprovoked seizures: an analysis in children followed from the time of a first febrile seizure. Epilepsia 39: 77–80

    CAS  PubMed  Google Scholar 

  62. Pavlovic MV et al. (1999) Febrile convulsions in a Serbian region: a 10-year epidemiological study. Eur J Neurol 6: 39–42

    CAS  PubMed  Google Scholar 

  63. El-Radhi AS (1998) Lower degree of fever at the initial febrile convulsion is associated with increased risk of subsequent convulsions. Eur Paediatr Neurol 2: 91–96

    CAS  Google Scholar 

  64. Chang YC et al. (2000) Neurocognitive attention and behavior outcome of school-age children with a history of febrile convulsions: a population study. Epilepsia 41: 412–420

    CAS  PubMed  Google Scholar 

  65. Piperidou HN et al. (2002) retrospective study of febrile seizures: subsequent electroencephalogram findings, unprovoked seizures and epilepsy in adolescents. J Int Med Res 30: 560–565

    CAS  PubMed  Google Scholar 

  66. Borusiak P and Herbold S (2003) Serum neuron-specific enolase in children with febrile seizures: time profile and prognostic implications. Brain Dev 25: 272–274

    PubMed  Google Scholar 

  67. Okumara A et al. (2004) Treatment and outcome in patients with febrile convulsion associated with epileptiform discharges on electroencephalography. Brain Dev 26: 241–244

    Google Scholar 

  68. Vestergaard M et al. (2004) MMR vaccination and febrile seizures: evaluation of susceptible subgroups and long-term prognosis. JAMA 292: 351–357

    CAS  PubMed  Google Scholar 

  69. Lee WL and Ong HT (2004) Afebrile seizures associated with minor infections: comparison with febrile seizures and unprovoked seizures. Pediatr Neurol 31: 157–164

    PubMed  Google Scholar 

  70. Birca A et al. (2005) Genetic influence on the clinical characteristics and outcome of febrile seizure: a retrospective study. Eur J Paediatr Neurol 9: 339–345

    PubMed  Google Scholar 

  71. Yu ZL et al. (2007) Febrile seizures are associated with mutation of seizure-related (SEZ) 6, a brain-specific gene. J Neurosci Res 85: 166–172

    CAS  PubMed  Google Scholar 

  72. Kuks JB et al. (1993) Hippocampal sclerosis in epilepsy and childhood febrile seizures. Lancet 342: 1391–1394

    CAS  PubMed  Google Scholar 

  73. Harvey AS et al. (1995) Febrile seizures and hippocampal sclerosis: frequent and related findings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol 12: 201–206

    CAS  PubMed  Google Scholar 

  74. Davies KG et al. (1996) Relationship of hippocampal sclerosis to duration and age of onset of epilepsy, and childhood febrile seizures in temporal lobectomy patients. Epilepsy Res 24: 119–126

    CAS  PubMed  Google Scholar 

  75. O'Brien TJ et al. (1996) Temporal lobe epilepsy caused by mesial temporal sclerosis and temporal neocortical lesions: a clinical and electroencephalographic study of 46 pathologically proven cases. Brain 119: 2133–2141

    PubMed  Google Scholar 

  76. Kuzniecky RI et al. (1996) Qualitative MRI segmentation in mesial temporal sclerosis: clinical correlations. Epilepsia 37: 433–439

    CAS  PubMed  Google Scholar 

  77. Kanemoto K et al. (1996) Characteristics of temporal lobe epilepsy with mesial temporal sclerosis, with special reference to psychotic episodes. Neurology 47: 1199–1203

    CAS  PubMed  Google Scholar 

  78. Bronen RA et al. (1997) Qualitative MR imaging of refractory temporal lobe epilepsy requiring surgery: correlation with pathology and seizure outcome after surgery. AJR Am J Roentgenol 169: 875–882

    CAS  PubMed  Google Scholar 

  79. Van Paesschen W et al. (1997) The spectrum of hippocampal sclerosis: a quantitative magnetic resonance imaging study. Ann Neurol 41: 41–51

    CAS  PubMed  Google Scholar 

  80. Van Paesschen W et al. (1997) Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy. Ann Neurol 42: 756–766

    CAS  PubMed  Google Scholar 

  81. Kilpatrick C et al. (1999) Seizure frequency and duration of epilepsy are not risk factors for postoperative seizure outcome in patients with hippocampal sclerosis. Epilepsia 40: 899–903

    CAS  PubMed  Google Scholar 

  82. Davies KG et al. (1999) Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 52: 1717–1718

    CAS  PubMed  Google Scholar 

  83. Choi D et al. (1999) White-matter changes in mesial temporal sclerosis: correlation of MRI with PET, pathology, and clinical features. Epilepsia 40: 1634–1641

    CAS  PubMed  Google Scholar 

  84. Kim WJ et al. (1999) The prognosis for control of seizures with medications in patients with MRI evidence for mesial temporal sclerosis. Epilepsia 40: 290–293

    CAS  PubMed  Google Scholar 

  85. Bower SP et al. (2000) Degree of hippocampal atrophy is not related to a history of febrile seizures in patients with proved hippocampal sclerosis. J Neurol Neurosurg Psychiatry 69: 733–738

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kanemoto K et al. (2000) Interleukin (IL)-1β, IL-1α, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 47: 571–574

    CAS  PubMed  Google Scholar 

  87. Stephen LJ et al. (2001) Does the cause of localisation-related epilepsy influence the response to antiepileptic drug treatment. Epilepsia 42: 357–362

    CAS  PubMed  Google Scholar 

  88. Briellmann RS et al. (2001) Seizures in family members of patients with hippocampal sclerosis. Neurology 57: 1800–1804

    CAS  PubMed  Google Scholar 

  89. Hennessy MJ et al. (2001) Prognostic factors in the surgical treatment of medically intractable epilepsy associated with mesial temporal sclerosis. Acta Neurol Scand 103: 344–350

    CAS  PubMed  Google Scholar 

  90. Fuerst D et al. (2001) Volumetric MRI, pathological, and neuropsychological progression in hippocampal sclerosis. Neurology 57: 184–188

    CAS  PubMed  Google Scholar 

  91. Moran NF et al. (2001) Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis. Brain 124: 167–175

    CAS  PubMed  Google Scholar 

  92. Thom M et al. (2002) Cytoarchitectural abnormalities in hippocampal sclerosis. J Neuropathol Exp Neurol 6: 510–519

    Google Scholar 

  93. Janszky J et al. (2003) Clinical differences in patients with unilateral hippocampal sclerosis and unitemporal or bitemporal epileptiform discharges. Seizure 12: 550–554

    CAS  PubMed  Google Scholar 

  94. Janszky J et al. (2003) Clinical features and surgical outcome of medial temporal lobe epilepsy with a history of complex febrile convulsions. Epilepsy Res 55: 1–8

    CAS  PubMed  Google Scholar 

  95. Janszky J et al. (2003) Right hippocampal sclerosis is more common than left after febrile seizures. Neurology 60: 1209–1210

    CAS  PubMed  Google Scholar 

  96. Hardy SG et al. (2003) Factors predicting outcome of surgery for intractable epilepsy with pathologically verified mesial temporal sclerosis. Epilepsia 44: 565–568

    PubMed  Google Scholar 

  97. Kanemoto K et al. (2003) Increased frequency of interleukin-1β-511T allele in patients with temporal lobe epilepsy, hippocampal sclerosis, and prolonged febrile convulsion. Epilepsia 44: 796–799

    CAS  PubMed  Google Scholar 

  98. Xiao B et al. (2004) Aetiology of epilepsy in surgically treated patients in China. Seizure 13: 322–327

    PubMed  Google Scholar 

  99. Kalnins RM et al. (2004) Subtle microscopic abnormalities in hippocampal sclerosis do not predict clinical features of temporal lobe epilepsy. Epilepsia 45: 940–947

    PubMed  Google Scholar 

  100. Carne RP et al. (2004) MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127: 2276–2285

    CAS  PubMed  Google Scholar 

  101. Thivard L et al. (2005) Diffusion tensor imaging in medial temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 28: 682–690

    PubMed  Google Scholar 

  102. Cohen-Gadol AA et al. (2005) Normal magnetic resonance imaging and medial temporal lobe epilepsy: the clinical syndrome of paradoxical temporal lobe epilepsy. J Neurosurg 102: 902–909

    PubMed  Google Scholar 

  103. Burneo JG et al. (2005) Race/ethnicity: a predictor of temporal lobe epilepsy surgery outcome. Epilepsy Behav 7: 486–490

    PubMed  Google Scholar 

  104. Yeni SN et al. (2005) Association between APOE polymorphisms and mesial temporal lobe epilepsy with hippocampal sclerosis. Eur J Neurol 12: 103–107

    CAS  PubMed  Google Scholar 

  105. Burneo JG et al. (2006) Race/ethnicity, sex, and socioeconomic status as predictors of outcome after surgery for temporal lobe epilepsy. Arch Neurol 63: 1106–1110

    PubMed  Google Scholar 

  106. Labate A et al. (2006) MRI evidence of mesial temporal sclerosis in sporadic 'benign' temporal lobe epilepsy. Neurology 66: 562–565

    CAS  PubMed  Google Scholar 

  107. Cendes F et al. (1993) Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology 43: 1083–1087

    CAS  PubMed  Google Scholar 

  108. Trenerry MR et al. (1993) Quantitative MRI hippocampal volumes: association with onset and duration of epilepsy, and febrile convulsions in temporal lobectomy patients. Epilepsy Res 15: 247–252

    CAS  PubMed  Google Scholar 

  109. Abou-Khalil B et al. (1993) Temporal lobe epilepsy after prolonged febrile convulsions: excellent outcome after surgical treatment. Epilepsia 34: 878–883

    CAS  PubMed  Google Scholar 

  110. Kuzniecky R et al. (1993) Predictive value of magnetic resonance imaging in temporal lobe epilepsy surgery. Arch Neurol 50: 65–69

    CAS  PubMed  Google Scholar 

  111. French JA et al. (1993) Characteristics of medial temporal lobe epilepsy: I. results of history and physical examination. Ann Neurol 34: 774–780

    CAS  PubMed  Google Scholar 

  112. Salanova V et al. (1994) Clinical characteristics and predictive factors in 98 patients with complex partial seizures treated with temporal resection. Arch Neurol 51: 1008–1013

    CAS  PubMed  Google Scholar 

  113. Hufnagel A et al. (1994) Prognostic significance of ictal and interictal epileptiform activity in temporal lobe epilepsy. Epilepsia 35: 1146–1153

    CAS  PubMed  Google Scholar 

  114. Kodama K et al. (1995) MR in temporal lobe epilepsy: early childhood onset versus later onset. AJNR Am J Neuroradiol 16: 523–529

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Umbricht D et al. (1995) Postictal and chronic psychoses in patients with temporal lobe epilepsy. Am J Psychiatry 152: 224–231

    CAS  PubMed  Google Scholar 

  116. Salanova V et al. (1996) The running down phenomenon in temporal lobe epilepsy. Brain 119: 989–996

    PubMed  Google Scholar 

  117. Barr WB et al. (1997) Bilateral reductions in hippocampal volume in adults with epilepsy and a history of febrile seizures. J Neurol Neurosurg Psychiatry 63: 461–467

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Harvey AS et al. (1997) Temporal lobe epilepsy in childhood: clinical, EEG, and neuroimaging findings and syndrome classification in a cohort with new-onset seizures. Neurology 49: 960–968

    CAS  PubMed  Google Scholar 

  119. Wang PJ et al. (1997) Magnetic resonance imaging in symptomatic/cryptogenic partial epilepsies of infants and children [Chinese]. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 38: 127–136

    CAS  PubMed  Google Scholar 

  120. Breier JI et al. (1997) Effects of duration of epilepsy on the uncoupling of metabolism and blood flow in complex partial seizures. Neurology 48: 1047–1053

    CAS  PubMed  Google Scholar 

  121. Gil-Nagel A and Risinger MW (1997) Ictal semiology in hippocampal versus extrahippocampal temporal lobe epilepsy. Brain 120: 183–192

    PubMed  Google Scholar 

  122. Hamati-Haddad A and Abou-Khalil B (1998) Epilepsy diagnosis and localization in patients with antecedent childhood febrile convulsions. Neurology 50: 917–922

    CAS  PubMed  Google Scholar 

  123. Kanemoto K et al. (1998) Characteristics and treatment of temporal lobe epilepsy with a history of complicated febrile convulsion. J Neurol Neurosurg Psychiatry 64: 245–248

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Schuh LA et al. (1998) Influence of head trauma on outcome following anterior temporal lobectomy. Arch Neurol 55: 1325–1328

    CAS  PubMed  Google Scholar 

  125. Salanova V et al. (1998) FDG-PET and MRI in temporal lobe epilepsy: relationship to febrile seizures, hippocampal sclerosis and outcome. Acta Neurol Scand 97: 146–153

    CAS  PubMed  Google Scholar 

  126. Guerreiro C et al. (1999) Clinical patterns of patients with temporal lobe epilepsy and pure amygdalar atrophy. Epilepsia 40: 453–461

    CAS  PubMed  Google Scholar 

  127. Davies KG et al. (1999) Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 52: 1717–1718

    CAS  PubMed  Google Scholar 

  128. Theodore WH et al. (1999) Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures. Neurology 52: 132–136

    CAS  PubMed  Google Scholar 

  129. Lawson JA et al. (2000) Predictors of hippocampal, cerebral and cerebellar volume reduction in childhood epilepsy. Epilepsia 41: 1540–1545

    CAS  PubMed  Google Scholar 

  130. Kobayashi E et al. (2001) Seizure outcome and hippocampal atrophy in familial mesial temporal lobe epilepsy. Neurology 56: 166–172

    CAS  PubMed  Google Scholar 

  131. Salmenperä T et al. (2001) Hippocampal and amygdaloid damage in partial epilepsy: a cross-sectional MRI study of 241 patients. Epilepsy Res 46: 69–82

    PubMed  Google Scholar 

  132. Sztriha L et al. (2002) Temporal lobe epilepsy in children: etiology in a cohort with new-onset seizures. Epilepsia 43: 75–80

    PubMed  Google Scholar 

  133. Pfänder M et al. (2002) Clinical features and EEG findings differentiating mesial from neocortical temporal lobe epilepsy. Epileptic Disord 4: 185–195

    Google Scholar 

  134. Keller SS et al. (2002) Voxel based morphometry of grey matter abnormalities in patients with medically intractable temporal lobe epilepsy: effects of side of seizure onset and epilepsy duration. J Neurol Neurosurg Psychiatry 73: 648–656

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Theodore WH et al. (2003) Total cerebral volume is reduced in patients with localization-related epilepsy and a history of complex febrile seizures. Arch Neurol 60: 250–252

    PubMed  Google Scholar 

  136. Porter BE et al. (2003) Dysplasia a common finding in intractable pediatric temporal lobe epilepsy. Neurology 61: 365–368

    CAS  PubMed  Google Scholar 

  137. Rosati A et al. (2003) Intractable temporal lobe epilepsy with rare spikes is less severe than with frequent spikes. Neurology 60: 1290–1295

    CAS  PubMed  Google Scholar 

  138. Theodore WH et al. (2004) Epilepsy duration, febrile seizures, and cerebral glucose metabolism. Epilepsia 45: 276–279

    PubMed  Google Scholar 

  139. Alessio A et al. (2004) Differences in memory performance and other clinical characteristics in patients with mesial temporal lobe epilepsy with and without hippocampal atrophy. Epilepsy Behav 5: 22–27

    CAS  PubMed  Google Scholar 

  140. Wu WC et al. (2005) Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: evaluations with MR volumetry and proton MR spectroscopy. AJNR Am J Neuroradiol 26: 1270–1275

    PubMed  PubMed Central  Google Scholar 

  141. Chabardés S et al. (2005) The temporopolar cortex plays a pivotal role in temporal lobe seizures. Brain 128: 1818–1831

    PubMed  Google Scholar 

  142. Salanova V et al. (2005) Temporal lobe epilepsy: analysis of failures and the role of reoperation. Acta Neurol Scand 111: 126–133

    CAS  PubMed  Google Scholar 

  143. Bernasconi N et al. (2005) Progression in temporal lobe epilepsy: differential atrophy in mesial temporal structures. Neurology 65: 223–228

    PubMed  Google Scholar 

  144. Abou-Khalil B et al. (2007) Familial genetic predisposition, epilepsy localization and antecedent febrile seizures. Epilepsy Res 73: 104–110

    CAS  PubMed  Google Scholar 

  145. Commission on Epidemiology and Prognosis, International League Against Epilepsy (1993) Guidelines for epidemiologic studies on epilepsy. Epilepsia 34: 592–596

  146. American Academy of Pediatrics Provisional Committee on Quality Improvement, Subcommittee on Febrile Seizures (1996) Practice parameter: the neurodiagnostic evaluation of the child with a first simple febrile seizure. Pediatrics 97: 769–772

  147. Webb DW et al. (1999) Retrospective study of late febrile seizures. Pediatr Neurol 20: 270–273

    CAS  PubMed  Google Scholar 

  148. Mauceri L and Pavone L (2002) Febrile seizures: neurological findings after a 30-year follow-up. Ital J Pediatr 28: 295–300

    Google Scholar 

  149. Senanayake N and Peiris H (1995) Mortality related to convulsive disorders in a developing country in Asia: trends over 20 years. Seizure 4: 273–277

    CAS  PubMed  Google Scholar 

  150. Annegers JF et al. (1979) The risk of epilepsy following febrile convulsions. Neurology 29: 297–303

    CAS  PubMed  Google Scholar 

  151. Berg A and Shinnar S (1996) Unprovoked seizures in children with febrile seizures: short-term outcome. Neurology 47: 562–568

    CAS  PubMed  Google Scholar 

  152. National Institutes of Health (1980) Febrile Seizures: Consensus Development Conference Summary Vol 3 No 2. Bethesda, MD: National Institutes of Health

  153. Verity CM and Golding J (1991) Risk of epilepsy after febrile convulsions: a national cohort study. BMJ 303: 1373–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Shinnar S (2006) Epidemiology of chidhood status epilepticus. In Status Epilepticus: Mechanisms and Management, 39–51 (Eds Wasterlain CG and Treiman DM) Cambridge, MA: MIT Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Shorvon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chungath, M., Shorvon, S. The mortality and morbidity of febrile seizures. Nat Rev Neurol 4, 610–621 (2008). https://doi.org/10.1038/ncpneuro0922

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0922

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing