Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: can neuroimaging provide insights into the role of ischemia in Baló's concentric sclerosis?

Abstract

Baló's concentric sclerosis (BCS) has long been considered to be a variant of multiple sclerosis. Although BCS was initially described over 100 years ago, relatively few antemortem cases have been identified, and the exact pathogenesis remains unknown. Inflammatory protective ischemic preconditioning has recently been suggested as a mechanism by which the typical concentric rings of the BCS lesion are formed. Advanced neuroimaging can provide important in vivo markers of disease progression that can assist in the diagnosis and management of patients with BCS. In this Review, we discuss evidence from longitudinal neuroimaging studies that supports the role of ischemic preconditioning in BCS.

Key Points

  • The lesion in Baló's concentric sclerosis (BCS) is characterized by a pattern of concentric alternating bands of myelinated and partially demyelinated neurons

  • Ischemic preconditioning proteins might protect against demyelination in an outwardly expanding BCS lesion, causing the formation of a 'spared' ring of myelinated tissue surrounded by another ring of demyelination outside of the region of protection

  • It is difficult to clinically distinguish BCS from other demyelinating diseases such as acute disseminated encephalomyelitis and multiple sclerosis; MRI is needed to confirm the diagnosis

  • Restricted diffusion, indicative of cytotoxic edema typically associated with ischemia, has now been reported in several BCS cases

  • Magnetic resonance spectroscopy shows that acute BCS lesions have decreased N-acetylaspartate peaks (consistent with neuronal loss), increased choline and lipid peaks (suggestive of increased cell membrane turnover and gliosis), and increased lactate peaks (consistent with impaired aerobic metabolism)

  • Ischemia is likely to have a role in the pathogenesis of BCS and pattern type III multiple sclerosis lesions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathology of classic Baló's concentric sclerosis
Figure 2: Proposed pathogenesis of Baló's concentric sclerosis
Figure 3: Fluid-attenuated inversion recovery MRI study demonstrating classic abnormalities consistent with Baló's concentric sclerosis

Similar content being viewed by others

References

  1. Karaarslan E et al. (2001) Baló's concentric sclerosis: clinical and radiologic features of five cases. AJNR Am J Neuroradiol. 22: 1362–1367

    CAS  PubMed  Google Scholar 

  2. Anschel DJ (2006) Reply to the paper by Wiendl et al.: diffusion abnormality in Baló's concentric sclerosis: clues for the pathogenesis. Eur Neurol. 55 : 111–112

    Article  PubMed  Google Scholar 

  3. Mowry EM et al. (2007) Baló's concentric sclerosis presenting as a stroke-like syndrome. Nat Clin Pract Neurol 3: 349–354

    Article  PubMed  Google Scholar 

  4. Brinar VV (2004) Non-MS recurrent demyelinating diseases. Clin Neurol Neurosurg. 106: 197–210

    Article  PubMed  Google Scholar 

  5. Brinar VV and Poser CM (2006) The spectrum of disseminated encephalomyelitis. Clin Neurol Neurosurg. 108: 295–310

    Article  PubMed  Google Scholar 

  6. Poser CM and Brinar VV (2004) The nature of multiple sclerosis. Clin Neurol Neurosurg. 106: 159–171

    Article  PubMed  Google Scholar 

  7. Yao DL et al. (1994) Concentric sclerosis (Baló): morphometric and in situ hybridization study of lesions in six patients. Ann Neurol. 35: 18–30

    Article  CAS  PubMed  Google Scholar 

  8. Moore GR et al. (1985) Baló's concentric sclerosis: new observations on lesion development. Ann Neurol. 17: 604–611

    Article  CAS  PubMed  Google Scholar 

  9. Chen CJ et al. (1999) Serial magnetic resonance imaging in patients with Baló's concentric sclerosis: natural history of lesion development. Ann Neurol. 46: 651–656

    Article  CAS  PubMed  Google Scholar 

  10. Moore GR et al. (2001) Baló's concentric sclerosis: surviving normal myelin in a patient with a relapsing–remitting clinical course. Mult Scler. 7: 375–382

    CAS  PubMed  Google Scholar 

  11. Khonsari RH and Calvez V (2007) The origins of concentric demyelination: self-organization in the human brain. PloS ONE. 2: e150

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stadelmann C et al. (2005) Tissue preconditioning may explain concentric lesions in Baló's type of multiple sclerosis. Brain. 128: 979–987

    Article  PubMed  Google Scholar 

  13. Sekijima YM et al. (1997) Serial magnetic resonance imaging (MRI) study of a patient with Baló's concentric sclerosis treated with immunoadsorption plasmapheresis. Mult Scler. 2: 291–294

    Article  CAS  PubMed  Google Scholar 

  14. Chen CJ (2001) Serial proton magnetic resonance spectroscopy in lesions of Baló concentric sclerosis. J Comput Assist Tomogr. 25: 713–718

    Article  CAS  PubMed  Google Scholar 

  15. Gu J et al. (2003) Concentric sclerosis: imaging diagnosis and clinical analysis of 3 cases. Neurol India. 51: 528–530

    CAS  PubMed  Google Scholar 

  16. Chen CJ et al. (1996) Serial MRI studies in pathologically verified Baló's concentric sclerosis. J Comput Assist Tomogr. 20: 732–735

    Article  CAS  PubMed  Google Scholar 

  17. Kim MO et al. (1997) Baló's concentric sclerosis: a clinical case study of brain MRI, biopsy, and proton magnetic resonance spectroscopic findings. J Neurol Neurosurg Psychiatry. 62: 655–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murakami Y et al. (1998) Baló's concentric sclerosis in a 4-year-old Japanese infant. Brain Dev. 20: 250–252

    Article  CAS  PubMed  Google Scholar 

  19. Singh S et al. (1999) Baló's concentric sclerosis: value of magnetic resonance imaging in diagnosis. Australas Radiol. 43: 400–404

    Article  CAS  PubMed  Google Scholar 

  20. Pohl D et al. (2005) Baló's concentric sclerosis associated with primary human herpesvirus 6 infection. J Neurol Neurosurg Psychiatry. 76: 1723–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wiendl H et al. (2005) Diffusion abnormality in Baló's concentric sclerosis: clues for the pathogenesis. Eur Neurol. 53: 42–44

    Article  PubMed  Google Scholar 

  22. Tersegno MM and Reich DR (1993) Baló's concentric sclerosis: a rare form of multiple sclerosis manifested as a dominant cerebral mass without other white matter lesions on MR. AJR Am J Roentgenol. 160: 901

    Article  CAS  PubMed  Google Scholar 

  23. Chen CJ et al. (1996) Baló's concentric sclerosis: MRI. Neuroradiology. 38: 322–324

    Article  CAS  PubMed  Google Scholar 

  24. Gharagozloo AM et al. (1994) Antemortem diagnosis of Baló concentric sclerosis: correlative MR imaging and pathologic features. Radiology. 191: 817–819

    Article  CAS  PubMed  Google Scholar 

  25. Ng SH et al. (1999) MRI features of Baló's concentric sclerosis. Br J Radiol. 72: 400–403

    Article  CAS  PubMed  Google Scholar 

  26. Caracciolo JT et al. (2001) Pathognomonic MR imaging findings in Baló concentric sclerosis. AJNR Am J Neuroradiol. 22: 292–293

    CAS  PubMed  Google Scholar 

  27. Kastrup O et al. (2002) Baló's concentric sclerosis: evolution of active demyelination demonstrated by serial contrast-enhanced MRI. J Neurol. 249: 811–814

    Article  CAS  PubMed  Google Scholar 

  28. Nagi S et al. (2005) Baló's concentric sclerosis in a North-African patient [French]. Rev Neurol (Paris). 161: 78–80

    Article  CAS  PubMed  Google Scholar 

  29. Spiegel M et al. (1989) MRI study of Baló's concentric sclerosis before and after immunosuppressive therapy. J Neurol. 236: 487–488

    Article  CAS  PubMed  Google Scholar 

  30. Iannucci G et al. (2000) Vanishing Baló-like lesions in multiple sclerosis. J Neurol Neurosurg Psychiatry. 69: 399–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Louboutin JP and Elie B (1995) Treatment of Baló's concentric sclerosis with immunosuppressive drugs followed by multimodality evoked potentials and MRI. Muscle Nerve. 18: 1478–1480

    Article  CAS  PubMed  Google Scholar 

  32. Weber R et al. (2006) Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J Cereb Blood Flow Metab. 26: 591–604

    Article  PubMed  Google Scholar 

  33. Kuker W et al. (2004) Modern MRI tools for the characterization of acute demyelinating lesions: value of chemical shift and diffusion-weighted imaging. Neuroradiology. 46: 421–426

    CAS  PubMed  Google Scholar 

  34. Petzold GC et al. (2005) Diffusion-weighted magnetic resonance imaging of acute disseminated encephalomyelitis. Eur J Neurol. 12: 735–736

    Article  CAS  PubMed  Google Scholar 

  35. Rosso C et al. (2006) Diffusion-weighted MR imaging characteristics of an acute stroke-like form of multiple sclerosis. AJNR Am J Neuroradiol. 27: 1006–1008

    CAS  PubMed  Google Scholar 

  36. Axer H et al. (2005) Initial DWI and ADC imaging may predict outcome in acute disseminated encephalomyelitis: report of two cases of brain stem encephalitis. J Neurol Neurosurg Psychiatry. 76: 996–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balasubramanya KS et al. (2007) Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis. Neuroradiology. 49: 177–183

    Article  CAS  PubMed  Google Scholar 

  38. Bernarding J et al. (2002) Diffusion- and perfusion-weighted MR imaging in a patient with acute disseminated encephalomyelitis (ADEM). J Magn Reson Imaging. 15: 96–100

    Article  PubMed  Google Scholar 

  39. Wuerfel J et al. (2004) Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain. 127: 111–119

    Article  PubMed  Google Scholar 

  40. Phuttharak W et al. (2006) ADC measurements in various patterns of MS lesions. J Med Assoc Thai. 89: 196–204

    PubMed  Google Scholar 

  41. Kavanagh EC et al. (2006) Diffusion-weighted imaging findings in Baló concentric sclerosis. Br J Radiol. 79: e28–e31

    Article  CAS  PubMed  Google Scholar 

  42. Pendlebury ST et al. (2000) Correlating magnetic resonance imaging markers of axonal injury and demyelination in motor impairment secondary to stroke and multiple sclerosis. Magn Reson Imaging. 18: 369–378

    Article  CAS  PubMed  Google Scholar 

  43. Narayana PA (2005) Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J Neuroimaging. 15 (Suppl): S46–S57

    Article  Google Scholar 

  44. Bizzi A et al. (2001) Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis. AJNR Am J Neuroradiol. 22: 1125–1130

    CAS  PubMed  Google Scholar 

  45. Mader I et al. (2005) MRI and proton MR spectroscopy in acute disseminated encephalomyelitis. Childs Nerv Syst. 21: 566–572

    Article  CAS  PubMed  Google Scholar 

  46. Bruneteau G et al. (2005) Contribution of proton magnetic resonance spectroscopy to the diagnosis of Baló's concentric sclerosis [French]. Rev Neurol (Paris). 161: 455–458

    Article  CAS  PubMed  Google Scholar 

  47. Graham GD et al. (2001) Spectroscopic assessment of alterations in macromolecule and small-molecule metabolites in human brain after stroke. Stroke. 32: 2797–2802

    Article  CAS  PubMed  Google Scholar 

  48. Lassmann H et al. (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 7: 115–121

    Article  CAS  PubMed  Google Scholar 

  49. Kornek B and Lassmann H (2003) Neuropathology of multiple sclerosis—new concepts. Brain Res Bull. 61: 321–326

    Article  CAS  PubMed  Google Scholar 

  50. Lucchinetti C et al. (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 47: 707–717

    Article  CAS  PubMed  Google Scholar 

  51. Aboul-Enein F et al. (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol. 62: 25–33

    Article  CAS  PubMed  Google Scholar 

  52. Lassmann H et al. (2003) A new paraclinical CSF marker for hypoxia-like tissue damage in multiple sclerosis lesions. Brain. 126: 1347–1357

    Article  PubMed  Google Scholar 

  53. Airas L et al. (2005) Successful pregnancy of a patient with Baló's concentric sclerosis. Mult Scler. 11: 346–348

    Article  PubMed  Google Scholar 

  54. Wakefield AJ et al. (1994) Immunohistochemical study of vascular injury in acute multiple sclerosis. J Clin Pathol. 47: 129–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dutta R et al. (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 59: 478–489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Steven Galetta and Dr Dina Jacobs for their helpful comments and suggestions. This work was supported by a University-wide AIDS Research Program Grant (CF05-SD-301) and an American Foundation for AIDS Research Grant (106729-40-RFRL), both awarded to BM Ances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beau M Ances.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Existing literature of radiological findings associated with Baló's concentric sclerosis. (DOC 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mowry, E., Woo, J. & Ances, B. Technology Insight: can neuroimaging provide insights into the role of ischemia in Baló's concentric sclerosis?. Nat Rev Neurol 3, 341–348 (2007). https://doi.org/10.1038/ncpneuro0519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0519

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing