Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: mitochondria as new therapeutic targets in diabetic neuropathy

Abstract

Diabetic neuropathy (DN) is the most common complication of diabetes mellitus, and it imposes a considerable burden on a patient's quality of life and the health-care system. Despite the prevalence and severity of DN, there are no effective treatments. Pathogenetic evidence suggests that DN is marked by degeneration of dorsal root ganglion (DRG) neurons in peripheral nerves, and that DRG mitochondria are particularly affected. DRG mitochondria are especially vulnerable because they are the origin of reactive oxygen species production in the hyperglycemic neuron. Accumulating evidence indicates that neuronal mitochondria are subject to damage at the level of their DNA, and their outer and inner membranes, and also via deregulation of mitochondrial fission and fusion proteins that control mitochondrial shape and number. This Review will survey the mechanisms of mitochondrial degeneration in the pathogenesis of DN, highlighting potential mitochondrial sites for therapeutic intervention.

Key Points

  • Diabetic neuropathy (DN) results from hyperglycemia-induced damage to the peripheral nervous system, as indicated by loss of Schwann cells, myelinated axons, and a population of sensory neurons located in the dorsal root ganglia

  • Hyperglycemia increases the production and stabilization of reactive oxygen species (ROS) that damage peripheral neurons, particularly at the level of mitochondria

  • ROS might compromise the integrity of the mitochondrial genome, thereby contributing to the mitochondrial dysfunction underlying DN

  • ROS induce local apoptosis in peripheral neurons via actions of caspases and proapoptotic Bcl proteins that damage mitochondria, and ultimately impair neuronal function and viability

  • As recently shown for several hereditary neuropathies, dysregulated mitochondrial fission and fusion might have a pathogenetic role in mitochondrial damage that underlies the neuronal degeneration and functional loss in DN

  • Therapies aimed at preserving mitochondrial structure and function could be beneficial treatments for DN

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyperglycemia increases production of reactive oxygen species (ROS) in mitochondria.
Figure 2: Model of hyperglycemia-induced metabolic and apoptotic fission.

Similar content being viewed by others

References

  1. Mokdad AH et al. (2001) The continuing epidemics of obesity and diabetes in the United States. JAMA 286: 1195–1200

    Article  CAS  Google Scholar 

  2. Sheetz MJ and King GL (2002) Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA 288: 2579–2588

    Article  CAS  Google Scholar 

  3. Feldman EL et al. (1999) Diabetic neuropathy. In Current Review of Diabetes, 71–83 (Ed. Taylor S) Philadelphia: Current Medicine

    Google Scholar 

  4. Vileikyte L (2001) Diabetic foot ulcers: a quality of life issue. Diabetes Metab Res Rev 17: 246–249

    Article  CAS  Google Scholar 

  5. Ramsey SD et al. (1999) Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care 22: 382–387

    Article  CAS  Google Scholar 

  6. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986

  7. [No authors listed] (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352: 837–853

  8. Kalichman MW et al. (1998) Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol (Berl) 95: 47–56

    Article  CAS  Google Scholar 

  9. Chopra JS et al. (1977) Pathology and time relationship of peripheral nerve changes in experimental diabetes. J Neurol Sci 32: 53–67

    Article  CAS  Google Scholar 

  10. Sendtner M et al. (1991) Effect of ciliary neurotrophic factor (CNTF) on motoneuron survival. J Cell Sci Suppl 15: 103–109

    Article  CAS  Google Scholar 

  11. Greene DA et al. (1992) Complications: neuropathy, pathogenetic considerations. Diabetes Care 15: 1902–1925

    Article  CAS  Google Scholar 

  12. Schmeichel AM et al. (2003) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52: 165–171

    Article  CAS  Google Scholar 

  13. Sima AAF et al. (1988) Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstrations of axo-glial dysjunction in human diabetic neuropathy. J Clin Invest 81: 349–364

    Article  CAS  Google Scholar 

  14. Llewelyn JG et al. (1991) Sural nerve morphometry in diabetic autonomic and painful sensory neuropathy. Brain 114: 867–892

    Article  Google Scholar 

  15. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820

    Article  CAS  Google Scholar 

  16. Stevens MJ et al. (2002) Pathogenesis of diabetic neuropathy. In Ellenberg and Rifkin's Diabetes Mellitus, 747–770 (Eds Porte D Jr et al.) New York: McGraw Hill

    Google Scholar 

  17. Cameron NE et al. (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44: 1973–1988

    Article  CAS  Google Scholar 

  18. Bach D et al. (2005) Expression of Mfn2, the Charcot–Marie–Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor [alpha] and interleukin-6. Diabetes 54: 2685–2693

    Article  CAS  Google Scholar 

  19. Bach D et al. (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: a novel regulatory mechanism altered in obesity. J Biol Chem 278: 17190–17197

    Article  CAS  Google Scholar 

  20. Russell JW et al. (2002) High glucose induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16: 1738–1748

    Article  CAS  Google Scholar 

  21. Vincent AM et al. (2005) Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 19: 638–640

    Article  CAS  Google Scholar 

  22. Vincent AM et al. (2005) Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury. Antiox Redox Signal 7: 1494–1506

    Article  CAS  Google Scholar 

  23. Leinninger GM et al. (2004) Insulin-like growth factor-I (IGF-I) regulates glucose-induced mitochondrial depolarization and apoptosis in human neuroblastoma. Cell Death Differ 11: 885–896

    Article  CAS  Google Scholar 

  24. Leinninger GM et al. (2004) Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. FASEB J 18: 1544–1546

    Article  CAS  Google Scholar 

  25. Kim JY et al. (2005) Mitochondrial DNA content is decreased in autosomal dominant optic atrophy. Neurology 64: 966–972

    Article  CAS  Google Scholar 

  26. Harrison JF et al. (2005) Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance. Nucleic Acids Res 33: 4660–4671

    Article  CAS  Google Scholar 

  27. Ryu H et al. (2005) Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc Natl Acad Sci USA 102: 13915–13920

    Article  CAS  Google Scholar 

  28. Mehrabian Z et al. (2005) Regulation of mitochondrial gene expression by energy demand in neural cells. J Neurochem 93: 850–860

    Article  CAS  Google Scholar 

  29. Peltier AC and Russell JW (2002) Recent advances in drug-induced neuropathies. Curr Opin Neurol 15: 633–638

    Article  Google Scholar 

  30. Raff MC et al. (2002) Axonal self-destruction and neurodegeneration. Science 296: 868–871

    Article  CAS  Google Scholar 

  31. Greene DA et al. (1999) Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur J Pharmacol 375: 217–223

    Article  CAS  Google Scholar 

  32. Russell JW et al. (1999) Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 6: 347–363

    Article  CAS  Google Scholar 

  33. Cheng C and Zochodne DW (2003) Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes 52: 2363–2371

    Article  CAS  Google Scholar 

  34. Srinivasan S et al. (2000) Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 49: 1932–1938

    Article  CAS  Google Scholar 

  35. Zochodne DW et al. (2001) Does diabetes target ganglion neurones? Progressive sensory neurone involvement in long-term experimental diabetes. Brain 124: 2319–2334

    Article  CAS  Google Scholar 

  36. Raff MC et al. (2002) Axonal self-destruction and neurodegeneration. Science 296: 868–871

    Article  CAS  Google Scholar 

  37. Cellerino A et al. (2000) Apoptosis in the developing visual system. Cell Tissue Res 301: 53–69

    Article  CAS  Google Scholar 

  38. Graham SH et al. (2000) Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. J Neurotrauma 17: 831–841

    Article  CAS  Google Scholar 

  39. Yamaguchi H and Wang HG (2002) Bcl-XL protects BimEL-induced Bax conformational change and cytochrome C release independent of interacting with Bax or BimEL. J Biol Chem 277: 41604–41612

    Article  CAS  Google Scholar 

  40. Eskes R et al. (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20: 929–935

    Article  CAS  Google Scholar 

  41. Marani M et al. (2002) Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol Cell Biol 22: 3577–3589

    Article  CAS  Google Scholar 

  42. Uo T et al. (2004) Neurons exclusively express N-BAK, a BH3 domain-only BAK isoform that promotes neuronal apoptosis. J Biol Chem 250: 9065–9073

    Google Scholar 

  43. Degli EM and Dive C (2003) Mitochondrial membrane permeabilisation by Bax/Bak. Biochem Biophys Res Commun 304: 455–461

    Article  Google Scholar 

  44. Makin GW et al. (2001) Damage-induced Bax N-terminal change, translocation to mitochondria and formation of Bax dimers/complexes occur regardless of cell fate. EMBO J 20: 6306–6315

    Article  CAS  Google Scholar 

  45. Antonsson B et al. (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345 Pt 2: 271–278

    Article  CAS  Google Scholar 

  46. Kuwana T et al. (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331–342

    Article  CAS  Google Scholar 

  47. Ahmad KA et al. (2004) Hydrogen peroxide-mediated cytosolic acidification is a signal for mitochondrial translocation of Bax during drug-induced apoptosis of tumor cells. Cancer Res 64: 7867–7878

    Article  CAS  Google Scholar 

  48. Perier C et al. (2005) Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA 102: 19126–19131

    Article  CAS  Google Scholar 

  49. Leinninger GM et al. (2006) Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 23: 11–22

    Article  CAS  Google Scholar 

  50. Rube DA and van der Bliek AM (2004) Mitochondrial morphology is dynamic and varied. Mol Cell Biochem 256–257: 331–339

    Article  Google Scholar 

  51. Karbowski M and Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10: 870–880

    Article  CAS  Google Scholar 

  52. Szabadkai G et al. (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2 waves and protects against Ca2-mediated apoptosis. Mol Cell 16: 59–68

    Article  CAS  Google Scholar 

  53. Karbowski M et al. (2004) Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol 164: 493–499

    Article  CAS  Google Scholar 

  54. Züchner S et al. (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat Genet 36: 449–451

    Article  Google Scholar 

  55. Delettre C et al. (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207–210

    Article  CAS  Google Scholar 

  56. Lee YJ et al. (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15: 5001–5011

    Article  CAS  Google Scholar 

  57. Karbowski M et al. (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159: 931–938

    Article  CAS  Google Scholar 

  58. Arai R et al. (2004) Establishment of stable hFis1 knockdown cells with an siRNA expression vector. J Biochem (Tokyo) 136: 421–425

    Article  CAS  Google Scholar 

  59. Frank S et al. (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1: 515–525

    Article  CAS  Google Scholar 

  60. Yu T et al. (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103: 2653–2658

    Article  CAS  Google Scholar 

  61. Sundkvist G et al. (2000) Sorbitol and myo-inositol levels and morphology of sural nerve in relation to peripheral nerve function and clinical neuropathy in men with diabetic, impaired, and normal glucose tolerance. Diabet Med 17: 259–268

    Article  CAS  Google Scholar 

  62. Rudofsky G Jr et al. (2006) Functional polymorphisms of UCP2 and UCP3 are associated with a reduced prevalence of diabetic neuropathy in patients with type 1 diabetes. Diabetes Care 29: 89–94

    Article  CAS  Google Scholar 

  63. Brussee V et al. (2004) Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes 53: 1824–1830

    Article  CAS  Google Scholar 

  64. Huang TJ et al. (2005) Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol 194: 279–283

    CAS  Google Scholar 

  65. Huang TJ et al. (2003) Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 52: 2129–2136

    Article  CAS  Google Scholar 

  66. Ilnytska O et al. (2006) Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 55: 1686–1694

    Article  CAS  Google Scholar 

  67. Bouchier-Hayes L et al. (2005) Mitochondria: pharmacological manipulation of cell death. J Clin Invest 115: 2640–2647

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva L Feldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinninger, G., Edwards, J., Lipshaw, M. et al. Mechanisms of Disease: mitochondria as new therapeutic targets in diabetic neuropathy. Nat Rev Neurol 2, 620–628 (2006). https://doi.org/10.1038/ncpneuro0320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing