Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Renal tract malformations: perspectives for nephrologists

Abstract

Renal tract malformations are congenital anomalies of the kidneys and/or lower urinary tract. One challenging feature of these conditions is that they can present not only prenatally but also in childhood or adulthood. The most severe types of malformations, such as bilateral renal agenesis or dysplasia, although rare, lead to renal failure. With advances in dialysis and transplantation for young children, it is now possible to prevent the early death of at least some individuals with severe malformations. Other renal tract malformations, such as congenital pelviureteric junction obstruction and primary vesicoureteric reflux, are relatively common. Renal tract malformations are, collectively, the major cause of childhood end-stage renal disease. Their contribution to the number of adults on renal replacement therapy is less clear and has possibly been underestimated. Renal tract malformations can be familial, and specific mutations of genes involved in renal tract development can sometimes be found in affected individuals. These features provide information about the causes of malformations but also raise questions about whether to screen relatives. Whether prenatal decompression of obstructed renal tracts, or postnatal initiation of therapies such as prophylactic antibiotics or angiotensin blockade, improve long-term renal outcomes remains unclear.

Key Points

  • Renal tract malformations can present not only prenatally, but also in childhood or adulthood

  • Histological diagnoses of kidney malformations are rarely obtained in live patients, so radiological assessments such as ultrasonography and renography are commonly used to inform diagnosis

  • Renal tract malformations are, collectively, the major cause of childhood end-stage renal disease

  • Renal tract malformations can be familial, and specific mutations of renal tract developmental genes can be found in some affected individuals

  • It is unclear whether either prenatal decompression of obstructed renal tracts or therapies initiated in childhood improve renal outcomes in adulthood

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Diagram of normal and abnormal kidney development.

References

  1. Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8: 791–802

    Article  CAS  PubMed  Google Scholar 

  2. Tryggvason K et al. (2006) Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med 354: 1387–1401

    Article  CAS  PubMed  Google Scholar 

  3. Adeva M et al. (2006) Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore) 85: 1–21

    Article  Google Scholar 

  4. Rossetti S et al. (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18: 2143–2160

    Article  CAS  PubMed  Google Scholar 

  5. Hildebrandt F and Zhou W (2007) Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18: 1855–1871

    Article  CAS  PubMed  Google Scholar 

  6. Potter EL (1972) Normal and Abnormal Development of the Kidney. Chicago: Year Book Medical Publishers, Inc.

    Google Scholar 

  7. Woolf AS and Jenkins D (2006) Development of the kidney. In Heptinstall's Pathology of the Kidney, edn 6, 71–95 (Eds Jennette JC et al.) Philadelphia–New York: Lippincott–Raven

    Google Scholar 

  8. Boyden EA (1932) Congenital absence of the kidney: an interpretation based on a 10-mm. human embryo exhibited unilateral renal agenesis. Anat Rec 52: 325–349

    Article  Google Scholar 

  9. Gruenwald P (1939) The mechanism of kidney development in human embryos as revealed by an early stage in the agenesis of the ureteric bud. Anat Rec 75: 237–247

    Article  Google Scholar 

  10. Mishra A (2007) Renal agenesis: report of an interesting case. Br J Radiol 80: e167–e169

    Article  CAS  PubMed  Google Scholar 

  11. Deshpande SA and Watson H (2006) Renal ultrasonography not required in babies with isolated minor ear anomalies. Arch Dis Child Fetal Neonatal Ed 91: F29–F30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thorner P et al. (1995) Kidneys and lower urinary tract. In Diseases of the Fetus and Newborn, 609–661 (Eds Reed GB et al.) London: Cajpman and Hall Medical

    Google Scholar 

  13. Risdon RA (1971) Renal dysplasia. J Clin Pathol 24: 57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsell DG et al. (1996) The pathogenesis of multicystic dysplastic kidney disease: insights from the study of fetal kidneys. Lab Invest 74: 883–893

    CAS  PubMed  Google Scholar 

  15. Shibata S et al. (2001) Initial pathological events in renal dysplasia with urinary tract obstruction in utero. Virchows Arch 439: 560–570

    Article  CAS  PubMed  Google Scholar 

  16. Belk RA et al. (2002) A family study and the natural history of prenatally detected unilateral multicystic dysplastic kidney. J Urol 167: 666–669

    Article  CAS  PubMed  Google Scholar 

  17. Hiraoka M et al. (2002) Renal aplasia is the predominant cause of congenital solitary kidneys. Kidney Int 61: 1840–1844

    Article  PubMed  Google Scholar 

  18. Winyard PJ et al. (1996) Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int 49: 135–146

    Article  CAS  PubMed  Google Scholar 

  19. Damen–Elias HA et al (2005) Concomitant anomalies in 100 children with unilateral multicystic kidney. Ultrasound Obstet Gynecol 25: 384–388

    Article  PubMed  Google Scholar 

  20. Mackie GG and Stephens FD (1975) Duplex kidneys: a correlation of renal dysplasia with position of ureteric orifices. J Urol 114: 1137–1144

    Article  Google Scholar 

  21. Daikha–Dahmane F et al. (1997) Development of human fetal kidney in obstructive uropathy: correlations with ultrasonography and urine biochemistry. Kidney Int 52: 21–32

    Article  PubMed  Google Scholar 

  22. Bernstein J and Barajas L (1994) Renal tubular dysgenesis: evidence of abnormality in the renin–angiotensin system. J Am Soc Nephrol 5: 224–227

    CAS  PubMed  Google Scholar 

  23. Keller G et al. (2003) Nephron number in patients with primary hypertension. N Engl J Med 348: 101–108

    Article  PubMed  Google Scholar 

  24. Hughson MD et al. (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69: 671–678

    Article  CAS  PubMed  Google Scholar 

  25. Krishnan A et al. (2006) The anatomy and embryology of posterior urethral valves. J Urol 172: 1214–1220

    Article  Google Scholar 

  26. Gargollo PC and Diamond DA (2007) Therapy insight: what nephrologists need to know about primary vesicoureteral reflux. Nat Clin Pract Nephrol 3: 551–563

    Article  PubMed  Google Scholar 

  27. Risdon RA et al. (1993) Reflux nephropathy in children submitted to unilateral nephrectomy: a clinicopathological study. Clin Nephrol 40: 308–314

    CAS  PubMed  Google Scholar 

  28. Zhang PL et al. (2000) Ureteropelvic junction obstruction: morphological and clinical studies. Pediatr Nephrol 14: 820–826

    Article  CAS  PubMed  Google Scholar 

  29. Huang WY et al. (2006) Renal biopsy in congenital ureteropelvic junction obstruction: evidence for parenchymal maldevelopment. Kidney Int 69: 137–143

    Article  PubMed  Google Scholar 

  30. Roach PJ et al. (1995) Renal dysplasia in infants: appearance on 99mTc DMSA scintigraphy. Pediatr Radiol 25: 472–475

    Article  CAS  PubMed  Google Scholar 

  31. Zagar I et al. (2002) The value of radionuclide studies in children with autosomal recessive polycystic kidney disease. Clin Nucl Med 27: 339–344

    Article  PubMed  Google Scholar 

  32. Fotopoulios AD et al. (2002) Individual renal function in polycystic kidney disease: a follow–up study. Clin Nucl Med 26: 518–524

    Article  Google Scholar 

  33. Wiesel A et al. (2005) Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet 48: 131–144

    Article  CAS  PubMed  Google Scholar 

  34. Slovis TL et al. (1993) Hyperechoic kidneys in the newborn and young infant. Pediatr Nephrol 7: 294–302

    Article  CAS  PubMed  Google Scholar 

  35. Tsatsaris V et al. (2002) Prenatal diagnosis of bilateral isolated fetal hyperechogenic kidneys: is it possible to predict long term outcome? BJOG 109: 1388–1393

    Article  CAS  PubMed  Google Scholar 

  36. Abbott JF et al. (1998) Posterior urethral valves: inaccuracy of prenatal diagnosis. Fetal Diagn Ther 13: 179–183

    Article  CAS  PubMed  Google Scholar 

  37. Bogart MM et al. (2006) Prune-belly syndrome in two children and review of the literature. Pediatr Dermatol 23: 342–345

    Article  PubMed  Google Scholar 

  38. Lawson TL et al. (1981) Ultrasonic evaluation of fetal kidneys. Radiology 138: 153–156

    Article  CAS  PubMed  Google Scholar 

  39. Hill LM et al. (2000) Fetal compensatory renal hypertrophy with a unilateral functioning kidney. Ultrasound Obstet Gynecol 15: 191–193

    Article  CAS  PubMed  Google Scholar 

  40. Ickowicz V et al. (2006) Meckel–Gruber syndrome: sonography and pathology. Ultrasound Obstet Gynecol 27: 296–300

    Article  CAS  PubMed  Google Scholar 

  41. Webb NJ et al. (1997) Unilateral multicystic dysplastic kidney: the case for nephrectomy. Arch Dis Child 76: 31–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woolf AS and Hillman KA (2007) Unilateral renal agenesis and the congenital solitary functioning kidney: developmental, genetic and clinical perspectives. BJU Int 99: 17–21

    Article  CAS  PubMed  Google Scholar 

  43. Woolf AS (2006) Unilateral multicystic dysplastic kidney. Kidney Int 69: 190–193

    Article  CAS  PubMed  Google Scholar 

  44. Douglas–Denton R et al. (2002) Compensatory renal growth after unilateral nephrectomy in the ovine fetus. J Am Soc Nephrol 13: 406–410

    PubMed  Google Scholar 

  45. Heymans C et al. (1998) Multicystic kidney dysplasia: a prospective study on the natural history of the affected and the contralateral kidney. Eur J Pediatr 157: 673–675

    Article  CAS  PubMed  Google Scholar 

  46. Rosenbaum DM et al. (1984) Sonographic assessment of renal length in normal children. AJR Am J Roentgenol 142: 467–469

    Article  CAS  PubMed  Google Scholar 

  47. Emamian SA et al. (1993) Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. AJR Am J Roentgenol 160: 83–86

    Article  CAS  PubMed  Google Scholar 

  48. González Celedón C et al. (2007) Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol 22: 1014–1120

    Article  PubMed  Google Scholar 

  49. Hodson CJ and Edwards D (1960) Chronic pyelonephritis and vesico–ureteric reflux. Clin Radiol 11: 219–231

    Article  CAS  PubMed  Google Scholar 

  50. Woolf AS and Wilcox DT (2004) Understanding primary vesicoureteric reflux and associated nephropathies. Curr Paediatr 14: 563–567

    Article  Google Scholar 

  51. Hoberman A et al. (2003) Imaging studies after a first febrile urinary tract infection in young children. N Engl J Med 348: 195–202

    Article  PubMed  Google Scholar 

  52. Silva JM et al. (2006) Gender and vesico–ureteral reflux: a multivariate analysis. Pediatr Nephrol 21: 510–516

    Article  PubMed  Google Scholar 

  53. Hiraoka M et al. (1997) Congenitally small kidneys with reflux as a common cause of nephropathy in boys. Kidney Int 52: 811–816

    Article  CAS  PubMed  Google Scholar 

  54. Yeung CK et al. (1998) The characteristics of primary vesico–ureteric reflux in male and female infants with pre-natal hydronephrosis. Br J Urol 80: 319–327

    Article  Google Scholar 

  55. Winyard P et al. (2006) Perinatal renal venous thrombosis: presenting renal length predicts outcome. Arch Dis Child Fetal Neonatal Ed 91: F273–F278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gandy SJ et al. (2007) A clinical MRI investigation of the relationship between kidney volume measurements and renal function in patients with renovascular disease. Br J Radiol 80: 12–20

    Article  CAS  PubMed  Google Scholar 

  57. Gunn TR et al. (1995) Antenatal diagnosis of urinary tract abnormalities by ultrasonography after 28 weeks' gestation: incidence and outcome. Am J Obstet Gynecol 172: 479–486

    Article  CAS  PubMed  Google Scholar 

  58. Mendelsohn C (2004) Functional obstruction: the renal pelvis rules. J Clin Invest 113: 957–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Erde AM et al. (2007) Vesico–ureteral reflux in children with prenatally detected hydronephrosis: a systematic review. Ultrasound Obstet Gynecol 29: 463–469

    Article  Google Scholar 

  60. Sheih CP et al. (1989) Renal abnormalities in schoolchildren. Pediatrics 84: 1086–1090

    CAS  PubMed  Google Scholar 

  61. Roodhooft AM et al. (1984) Familial nature of congenital absence and severe dysgenesis of both kidneys. N Engl J Med 310: 1341–1345

    Article  CAS  PubMed  Google Scholar 

  62. The Renal Association [http://www.renalreg.com//wp-content/themes/renalregistry/pdf/ Report%202006/Chapter13.pdf] (accessed 20 March 2008)

  63. North American Pediatric Renal Trials and Collaborative Studies [http://web.emmes.com/study/ped/annlrept/annlrept.html] (accessed 20 March 2008)

  64. United States Renal Data System [http://www.usrds.org/2007/ref/B_prevalence_07.pdf] (accessed 20 March 2008)

  65. Kerecuk L et al. (2007) Autosomal dominant inheritance of non-syndromic renal hypoplasia and dysplasia: dramatic variation in clinical severity in a single kindred. Nephrol Dial Transplant 22: 259–263

    Article  PubMed  Google Scholar 

  66. Scott JE (2002) Fetal, perinatal, and infant death with congenital renal anomaly. Arch Dis Child 87: 114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cromie WJ et al. (2001) Implications of prenatal ultrasound screening in the incidence of major genitourinary malformations. J Urol 165: 1677–1680

    Article  CAS  PubMed  Google Scholar 

  68. Kari JA et al. (2000) Outcome and growth of infants with severe chronic renal failure. Kidney Int 57: 1681–1687

    Article  CAS  PubMed  Google Scholar 

  69. Klaassen I et al. (2007) Antenatal oligohydramnios of renal origin: long-term outcome. Nephrol Dial Transplant 22: 432–439

    Article  PubMed  Google Scholar 

  70. Ariel I et al. (1991) The urinary system in Down syndrome: a study of 124 autopsy cases. Pediatr Pathol 11: 879–888

    Article  CAS  PubMed  Google Scholar 

  71. Neild GH et al. (2004) Renal outcome in adults with renal insufficiency and irregular asymmetric kidneys. BMC Nephrol 5: 12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Roth KS et al. (2001) Obstructive nephropathy in children: long-term progression after relief of posterior urethral valve. Pediatrics 107: 1004–1010

    Article  CAS  PubMed  Google Scholar 

  73. Woolf AS and Thiruchelvam N (2001) Congenital obstructive uropathy: its origin and contribution to end–stage renal disease in children. Adv Ren Replace Ther 8: 157–163

    Article  CAS  PubMed  Google Scholar 

  74. Clark TJ et al. (2003) Prenatal bladder drainage in the management of fetal lower urinary tract obstruction: a systematic review and meta-analysis. Obstet Gynecol 102: 367–382

    PubMed  Google Scholar 

  75. Pluto Collaborative Study Group (2007) PLUTO trial protocol: percutaneous shunting for lower urinary tract obstruction randomised controlled trial. BJOG 114: 904–905

  76. Duke V et al. (1998) Proteinuria, hypertension and chronic renal failure in X-linked Kallmann's syndrome, a defined genetic cause of solitary functioning kidney. Nephrol Dial Transplant 13: 1998–2003

    Article  CAS  PubMed  Google Scholar 

  77. Kiprov DD et al. (1982) Focal and segmental glomeruloscerosis and proteinuria associated with unilateral renal agenesis. Lab Invest 46: 275–281

    CAS  PubMed  Google Scholar 

  78. Argueso LR et al. (1992) Prognosis of patients with unilateral renal agenesis. Pediatr Nephrol 6: 412–416

    Article  CAS  PubMed  Google Scholar 

  79. Heinonen PK (2004) Gestational hypertension and preeclampsia associated with unilateral renal agenesis in women with uterine malformations. Eur J Obstet Gynecol Reprod Biol 114: 39–43

    Article  PubMed  Google Scholar 

  80. Gonzalez E et al. (2005) Factors influencing progression of renal damage in patients with unilateral renal agenesis and remnant kidney. Kidney Int 68: 263–270

    Article  PubMed  Google Scholar 

  81. Hostetter TH et al. (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241: F85–F93

    CAS  PubMed  Google Scholar 

  82. Walsh TJ et al. (2007) Antenatal hydronephrosis and the risk of pyelonephritis hospitalization during the first year of life. Urology 69: 970–974

    Article  PubMed  Google Scholar 

  83. Sifhu G et al. (2006) Outcome of isolated antenatal hydronephrosis: a systematic review and meta-analysis. Pediatr Nephrol 21: 218–224

    Article  Google Scholar 

  84. Ransley PG et al. (1990) The postnatal management of hydronephrosis diagnosed by prenatal ultrasound. J Urol 144: 584–587

    Article  CAS  PubMed  Google Scholar 

  85. Decramer S et al. (2006) Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med 12: 398–400

    Article  CAS  PubMed  Google Scholar 

  86. Hodson EM et al. Interventions for primary vesicoureteric reflux. Cochrane Database of Systematic Reviews 2004, Issue 3. Art. No.: CD001532 10.1002/14651858.pub3

    Google Scholar 

  87. Craig JC et al. (2000) Does treatment of vesicoureteric reflux in childhood prevent end-stage renal disease attributable to reflux nephropathy. Pediatrics 105: 1236–1241

    Article  CAS  PubMed  Google Scholar 

  88. Smellie JM et al. (2001) Medical versus surgical treatment in children with severe bilateral vesicoureteric reflux and bilateral nephropathy: a randomised trial. Lancet 357: 1329–1333

    Article  CAS  PubMed  Google Scholar 

  89. Feldenberg LR and Siegel NJ (2000) Clinical course and outcome for children with multicystic dysplastic kidneys. Pediatr Nephrol 14: 1098–1101

    Article  CAS  PubMed  Google Scholar 

  90. Ardissino G et al. (2004) Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy: data from the Ital Kid Project. Pediatr Nephrol 19: 172–177

    Article  PubMed  Google Scholar 

  91. Ardissino G et al. (2004) Long-term outcome of vesicoureteral reflux associated chronic renal failure in children. Data from the ItalKid Project. J Urol 172: 305–310

    Article  PubMed  Google Scholar 

  92. Litwin M (2004) Risk factors for renal failure in children with non-glomerular nephropathies. Pediatr Nephrol 19: 178–186

    Article  PubMed  Google Scholar 

  93. Wühl E et al. (2004) Antihypertensive and antiproteinuric efficacy of ramipril in children with chronic renal failure. Kidney Int 66: 768–776

    Article  PubMed  Google Scholar 

  94. Ardissino G et al. (2007) No clear evidence of ACEi efficacy on the progression of chronic kidney disease in children with hypodysplastic nephropathy—report from the ItalKid Project database. Nephrol Dial Transplant 22: 2525–2530

    Article  PubMed  Google Scholar 

  95. Wingen AM et al. (1997) Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children: European Study Group of Nutritional Treatment of Chronic Renal Failure in Childhood. Lancet 349: 1117–1123

    Article  CAS  PubMed  Google Scholar 

  96. Woolf AS et al. (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15: 998–1007

    Article  PubMed  Google Scholar 

  97. Online Mendelian Inheritance in Man[http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim]

  98. Kochhar A et al. (2007) Branchio-oto-renal syndrome. Am J Med Genet A 143: 1671–1678

    Article  CAS  Google Scholar 

  99. Muroya K et al. (2001) GATA3 abnormalities and the phenotypic spectrum of HDR syndrome. J Med Genet 38: 374–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Biason-Lauber A et al. (2004) A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med 351: 792–798

    Article  CAS  PubMed  Google Scholar 

  101. Salomon R et al. (2001) PAX2 mutations in oligomeganephronia. Kidney Int 59: 457–462

    Article  CAS  PubMed  Google Scholar 

  102. Edghill EL et al. (2006) Mutations in hepatocyte nuclear factor-1B and their related phenotypes. J Med Genet 43: 84–90

    Article  CAS  PubMed  Google Scholar 

  103. Reardon W et al. (2007) Kidney failure in Townes–Brocks syndrome: an under recognized phenomenon? Am J Med Genet A 143: 2588–2591

    Article  CAS  Google Scholar 

  104. Tobin JL and Beales PL (2007) Bardet–Biedl syndrome: beyond the cilium. Pediatr Nephrol 22: 926–936

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tieder M et al. (1982) Renal abnormalities in the Bardet–Biedl syndrome. Int J Pediatr Nephrol 3: 199–203

    CAS  PubMed  Google Scholar 

  106. Sharifian M et al. (2007) Renal transplantation in patients with Bardet–Biedl syndrome. Arch Iran Med 10: 339–342

    PubMed  Google Scholar 

  107. McGregor L et al. (2003) Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet 34: 203–208

    Article  CAS  PubMed  Google Scholar 

  108. Jadeja S et al. (2005) Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet 37: 520–525

    Article  CAS  PubMed  Google Scholar 

  109. Beales PL et al. (2007) IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 39: 727–729

    Article  CAS  PubMed  Google Scholar 

  110. Consugar MB et al. (2007) Molecular diagnostics of Meckel–Gruber syndrome highlights phenotypic differences between MKS1 and MKS3. Hum Genet 121: 591–599

    Article  CAS  PubMed  Google Scholar 

  111. Ramasamy R et al. (2005) Patterns of inheritance in familial prune belly syndrome. Urology 65: 1227

    Article  PubMed  Google Scholar 

  112. Grisaru S and Rosenblum ND (2001) Glypicans and the biology of renal malformations. Pediatr Nephrol 16: 302–306

    Article  CAS  PubMed  Google Scholar 

  113. Weber S et al. (2005) Gene locus ambiguity in posterior urethral valves/prune-belly syndrome. Pediatr Nephrol 20: 1036–1042

    Article  PubMed  Google Scholar 

  114. Weber S et al. (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17: 2864–2870

    Article  CAS  PubMed  Google Scholar 

  115. Ulinski T et al. (2006) Renal phenotypes related to hepatocyte nuclear factor-1B (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17: 497–503

    Article  CAS  PubMed  Google Scholar 

  116. Decramer S et al. (2007) Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol 18: 923–933

    Article  CAS  PubMed  Google Scholar 

  117. Gresh L et al. (2004) A transcriptional network in polycystic kidney disease. EMBO J 23: 1657–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wolf MT et al. (2007) The Uromodulin C744G mutation causes MCKD2 and FJHN in children and adults and may be due to a possible founder effect. Kidney Int 71: 574–581

    Article  CAS  PubMed  Google Scholar 

  119. Feather SA et al. (2000) Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet 66: 1420–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sanna-Cherchi S et al. (2005) Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds. J Am Soc Nephrol 16: 1781–1787

    Article  PubMed  Google Scholar 

  121. Sanna-Cherchi S et al. (2007) Localization of a gene for nonsyndromic renal hypodysplasia to chromosome 1p32–33. Am J Hum Genet 80: 539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jenkins D et al. (2005) De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol 16: 2141–2149

    Article  CAS  PubMed  Google Scholar 

  123. Lu W et al. (2007) Disruption of ROBO2 is associated with congenital anomalies of kidney and urinary tract and confers risk of vesicoureteric reflux. Am J Hum Genet 80: 616–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Quinlan J et al. (2007) A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18: 1915–1921

    Article  CAS  PubMed  Google Scholar 

  125. Nishimura H et al. (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3: 1–10

    Article  CAS  PubMed  Google Scholar 

  126. Torra R et al. (1999) A loss-of-function model for cystogenesis in human autosomal dominant polycystic kidney disease type 2. Am J Hum Genet 65: 345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sivell S et al. Cancer genetic risk assessment for individuals at risk of familial breast cancer. Cochrane Database of Systematic Reviews 2007, Issue 2. Art. No.: CD003721 10.1002/14651858.CD003721.pub2

    Google Scholar 

  128. Burke W et al. (2002) Genetic test evaluation: information needs of clinicians, policy makers, and the public. Am J Epidemiol 156: 311–318

    Article  PubMed  Google Scholar 

  129. Zimmern RL and Kroese M (2007) The evaluation of genetic tests. J Public Health (Oxf) 29: 246–250

    Article  Google Scholar 

  130. Edghill EL et al. (2008) Hepatocyte nuclear factor-1B gene deletions a common cause of renal disease. Nephrol Dial Transplant 23: 627–635

    Article  CAS  PubMed  Google Scholar 

  131. Gurnett CA et al. (2007) Two novel point mutations in the long-range SHH enhancer in three families with triphalangeal thumb and preaxial polydactyly. Am J Med Genet A 143: 27–32

    Article  CAS  Google Scholar 

  132. Masoumi A et al. (2007) Potential pharmacological interventions in polycystic kidney disease. Drugs 67: 2495–2510

    Article  CAS  PubMed  Google Scholar 

  133. Woo DD et al. (1994) Taxol inhibits progression of congenital polycystic kidney disease. Nature 368: 750–753

    Article  CAS  PubMed  Google Scholar 

  134. Hollowell JG and Greenfield SP (2002) Screening siblings for vesicoureteral reflux. J Urol 168: 2138–2141

    Article  PubMed  Google Scholar 

  135. UK Genetic Testing Network [http://www.ukgtn.nhs.uk/gtn/]

  136. Liu C et al. (2007) Novel resequencing chip customized to diagnose mutations in patients with inherited syndromes of intrahepatic cholestasis. Gastroenterology 132: 119–126

    Article  CAS  PubMed  Google Scholar 

  137. Lewis DD and Woods SE (1994) Fetal alcohol syndrome. Am Fam Physician 50: 1025–1032, 1035–1036

    CAS  PubMed  Google Scholar 

  138. Nielsen GL et al. (2005) Risk of specific congenital abnormalities in offspring of women with diabetes. Diabet Med 22: 693–696

    Article  CAS  PubMed  Google Scholar 

  139. Welham SJ et al. (2002) Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney Int 61: 1231–1242

    Article  CAS  PubMed  Google Scholar 

  140. Welham SJ et al. (2005) Maternal diet programs embryonic kidney gene expression. Physiol Genomics 22: 48–56

    Article  CAS  PubMed  Google Scholar 

  141. Painter RC et al. (2005) Microalbuminuria in adults after prenatal exposure to the Dutch famine. J Am Soc Nephrol 16: 189–194

    Article  PubMed  Google Scholar 

  142. Mahieu-Caputo D et al. (2000) Twin-to-twin transfusion syndrome. Role of the fetal renin–angiotensin system. Am J Pathol 156: 629–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rodriguez MM et al. (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7: 17–25

    Article  PubMed  Google Scholar 

  144. Lacoste M et al. (2006) Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: role of the renin–angiotensin system. J Am Soc Nephrol 17: 2253–2263

    Article  CAS  PubMed  Google Scholar 

  145. Quan A (2006) Fetopathy associated with exposure to angiotensin converting enzyme inhibitors and angiotensin receptor antagonists. Early Hum Dev 82: 23–28

    Article  CAS  PubMed  Google Scholar 

  146. Cooper WO et al. (2006) Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med 354: 2443–2451

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L Kerecuk is supported by a Medical Research Council Clinical Training Fellowship. MF Schreuder is supported by Fellowships from the Sophia Children's Hospital Foundation and from the European Renal Association–European Dialysis and Transplantation Association. Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian S Woolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kerecuk, L., Schreuder, M. & Woolf, A. Renal tract malformations: perspectives for nephrologists. Nat Rev Nephrol 4, 312–325 (2008). https://doi.org/10.1038/ncpneph0807

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing