Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hereditary etiologies of hypomagnesemia

Abstract

Magnesium ions are essential to all living cells. As the second most abundant intracellular cation, magnesium has a crucial role in fundamental metabolic processes such as DNA and protein synthesis, oxidative phosphorylation, enzyme function, ion channel regulation, and neuromuscular excitability. After presenting an overview of magnesium homeostasis, we review the etiologies of hypomagnesemia, with an emphasis on hereditary causes.

Key Points

  • Magnesium deficiency is probably more prevalent than is recognized; this condition has been linked to common disorders such as diabetes, hypertension and cardiovascular disease

  • Hypomagnesemia is frequently associated with other electrolyte abnormalities such as hypokalemia and hypocalcemia; patients present with symptoms of increased neuromuscular excitability

  • Hypomagnesemia can cause severe, potentially fatal, cardiac arrhythmias

  • In most cases, hypomagnesemia results from acquired forms of renal and/or intestinal magnesium wasting

  • Hereditary causes of hypomagnesmia are rare; patients usually become symptomatic during the first two decades of life

  • Recent advances in characterization of hereditary magnesium disorders has enhanced understanding of renal and intestinal magnesium transport mechanisms

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Magnesium transport in the thick ascending limb of the loop of Henle is passive and paracellular, perhaps mediated by paracellin-1 (claudin-16) and claudin-19.
Figure 2: The distal convoluted tubule reabsorbs Mg2+ via an active transcellular route.

References

  1. 1

    Fine KD et al. (1991) Intestinal absorption of magnesium from food and supplements. J Clin Invest 88: 396–402

    CAS  Article  Google Scholar 

  2. 2

    Food and Nutrition Board of the Institute of Medicine (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington: National Academy Press

  3. 3

    Steele TH et al. (1968) The contribution of the chronically diseased kidney to magnesium homeostasis in man. J Lab Clin Med 71: 455–463

    CAS  PubMed  Google Scholar 

  4. 4

    Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52: 1180–1195

    CAS  Article  Google Scholar 

  5. 5

    Brown EM et al. (1993) Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366: 575–580

    CAS  Article  Google Scholar 

  6. 6

    Brown EM and MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81: 239–297

    CAS  Article  Google Scholar 

  7. 7

    Shareghi GR and Agus ZS (1982) Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J Clin Invest 69: 759–769

    CAS  Article  Google Scholar 

  8. 8

    Di Stefano A et al. (1993) Transepithelial Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle's loop of the mouse is a voltage-dependent process. Ren Physiol Biochem 16: 157–166

    CAS  PubMed  Google Scholar 

  9. 9

    Simon DB et al. (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285: 103–106

    CAS  Article  Google Scholar 

  10. 10

    Voets T et al. (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279: 19–25

    CAS  Article  Google Scholar 

  11. 11

    Schlingmann KP et al. (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31: 166–170

    CAS  Article  Google Scholar 

  12. 12

    Dai LJ et al. (2001) Magnesium transport in the renal distal convoluted tubule. Physiol Rev 81: 51–84

    CAS  Article  Google Scholar 

  13. 13

    Penner R and Fleig A (2007) The Mg2+ and Mg2+-nucleotide-regulated channel-kinase TRPM7. Handb Exp Pharmacol 179: 313–328

    CAS  Article  Google Scholar 

  14. 14

    Shils ME (1969) Experimental human magnesium depletion. Medicine (Baltimore) 48: 61–85

    CAS  Article  Google Scholar 

  15. 15

    Nichols CG et al. (1994) Mg2+-dependent inward rectification of ROMK1 potassium channels expressed in Xenopus oocytes. J Physiol 476: 399–409

    CAS  Article  Google Scholar 

  16. 16

    Chase LR and Slatopolsky E (1974) Secretion and metabolic efficacy of parathyroid hormone in patients with severe hypomagnesemia. J Clin Endocrinol Metab 38: 363–371

    CAS  Article  Google Scholar 

  17. 17

    Rude RK et al. (1976) Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency. Clin Endocrinol (Oxf) 5: 209–224

    CAS  Article  Google Scholar 

  18. 18

    Medalle R and Waterhouse C (1973) A magnesium-deficient patient presenting with hypocalcemia and hyperphosphatemia. Ann Intern Med 79: 76–79

    CAS  Article  Google Scholar 

  19. 19

    Saggese G et al. (1991) Hypomagnesemia and the parathyroid hormone-vitamin D endocrine system in children with insulin-dependent diabetes mellitus: effects of magnesium administration. J Pediatr 118: 220–225

    CAS  Article  Google Scholar 

  20. 20

    Ralston S et al. (1983) PTH and vitamin D responses during treatment of hypomagnesaemic hypoparathyroidism. Acta Endocrinol (Copenh) 103: 535–538

    CAS  Article  Google Scholar 

  21. 21

    Hisakawa N et al. (1998) A case of Gitelman's syndrome with chondrocalcinosis. Endocr J 45: 261–267

    CAS  Article  Google Scholar 

  22. 22

    Ea HK et al. (2005) Chondrocalcinosis secondary to hypomagnesemia in Gitelman's syndrome. J Rheumatol 32: 1840–1842

    PubMed  Google Scholar 

  23. 23

    Calo L et al. (2000) Hypomagnesemia and chondrocalcinosis in Bartter's and Gitelman's syndrome: review of the pathogenetic mechanisms. Am J Nephrol 20: 347–350

    CAS  Article  Google Scholar 

  24. 24

    Konrad M and Weber S (2003) Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol 14: 249–260

    Article  Google Scholar 

  25. 25

    Schlingmann KP et al. (2004) Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 19: 13–25

    Article  Google Scholar 

  26. 26

    Sutton RA and Domrongkitchaiporn S (1993) Abnormal renal magnesium handling. Miner Electrolyte Metab 19: 232–240

    CAS  PubMed  Google Scholar 

  27. 27

    Elisaf M et al. (1997) Fractional excretion of magnesium in normal subjects and in patients with hypomagnesemia. Magnes Res 10: 315–320

    CAS  PubMed  Google Scholar 

  28. 28

    Efrati E et al. (2005) The human paracellin-1 gene (hPCLN-1): renal epithelial cell-specific expression and regulation. Am J Physiol Renal Physiol 288: F272–F283

    CAS  Article  Google Scholar 

  29. 29

    Wong V and Goodenough DA (1999) Paracellular channels! Science 285: 62

    CAS  Article  Google Scholar 

  30. 30

    Ikari A et al. (2004) Association of paracellin-1 with ZO-1 augments the reabsorption of divalent cations in renal epithelial cells. J Biol Chem 279: 54826–54832

    CAS  Article  Google Scholar 

  31. 31

    Hou J et al. (2005) Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 118: 5109–5118

    CAS  Article  Google Scholar 

  32. 32

    Nicholson JC et al. (1995) Familial hypomagnesaemia—hypercalciuria leading to end-stage renal failure. Pediatr Nephrol 9: 74–76

    CAS  Article  Google Scholar 

  33. 33

    Praga M et al. (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47: 1419–1425

    CAS  Article  Google Scholar 

  34. 34

    Passer J (1976) Incomplete distal renal tubular acidosis in hypomagnesemia-dependent hypocalcemia. Arch Intern Med 136: 462–466

    CAS  Article  Google Scholar 

  35. 35

    Angelow S et al. (2007) Renal localization and function of the tight junction protein, claudin-19. Am J Physiol Renal Physiol 293: F166–F177

    CAS  Article  Google Scholar 

  36. 36

    Konrad M et al. (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949–957

    CAS  Article  Google Scholar 

  37. 37

    Geven WB et al. (1987) Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int 31: 1140–1144

    CAS  Article  Google Scholar 

  38. 38

    Meij IC et al. (1999) Hereditary isolated renal magnesium loss maps to chromosome 11q23. Am J Hum Genet 64: 180–188

    CAS  Article  Google Scholar 

  39. 39

    Meij IC et al. (2000) Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Nat Genet 26: 265–266

    CAS  Article  Google Scholar 

  40. 40

    Meij IC et al. (2003) Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Ann NY Acad Sci 986: 437–443

    CAS  Article  Google Scholar 

  41. 41

    Geven WB et al. (1987) Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet 32: 398–402

    CAS  Article  Google Scholar 

  42. 42

    Groenestege WM et al. (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117: 2260–2267

    CAS  Article  Google Scholar 

  43. 43

    Walder RY et al. (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31: 171–174

    CAS  Article  Google Scholar 

  44. 44

    Schlingmann KP et al. (2007) TRPM6 and TRPM7—gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772: 813–821

    CAS  Article  Google Scholar 

  45. 45

    Paunier L et al. (1968) Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics 41: 385–402

    CAS  PubMed  Google Scholar 

  46. 46

    Anast CS et al. (1972) Evidence for parathyroid failure in magnesium deficiency. Science 177: 606–608

    CAS  Article  Google Scholar 

  47. 47

    Shalev H et al. (1998) Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child 78: 127–130

    CAS  Article  Google Scholar 

  48. 48

    Brown EM et al. (1995) Calcium-ion-sensing cell-surface receptors. N Engl J Med 333: 234–240

    CAS  Article  Google Scholar 

  49. 49

    Watanabe S et al. (2002) Association between activating mutations of calcium-sensing receptor and Bartter's syndrome. Lancet 360: 692–694

    CAS  Article  Google Scholar 

  50. 50

    Pearce SH et al. (1996) A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 335: 1115–1122

    CAS  Article  Google Scholar 

  51. 51

    Vargas-Poussou R et al. (2002) Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 13: 2259–2266

    CAS  Article  Google Scholar 

  52. 52

    Simon DB et al. (1996) Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat Genet 12: 24–30

    CAS  Article  Google Scholar 

  53. 53

    Pollak MR et al. (1996) Gitelman's syndrome (Bartter's variant) maps to the thiazide-sensitive cotransporter gene locus on chromosome 16q13 in a large kindred. J Am Soc Nephrol 7: 2244–2248

    CAS  PubMed  Google Scholar 

  54. 54

    Riveira-Munoz E et al. (2007) Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J Am Soc Nephrol 18: 1271–1283

    CAS  Article  Google Scholar 

  55. 55

    Reilly RF and Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80: 277–313

    CAS  Article  Google Scholar 

  56. 56

    Cruz DN et al. (2001) Gitelman's syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int 59: 710–717

    CAS  Article  Google Scholar 

  57. 57

    Bartter FC et al. (1962) Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis: a new syndrome. Am J Med 33: 811–828

    CAS  Article  Google Scholar 

  58. 58

    Simon DB et al. (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet 17: 171–178

    CAS  Article  Google Scholar 

  59. 59

    Konrad M et al. (2000) Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11: 1449–1459

    CAS  PubMed  Google Scholar 

  60. 60

    Ohlsson A et al. (1984) A variant of Bartter's syndrome: Bartter's syndrome associated with hydramnios, prematurity, hypercalciuria and nephrocalcinosis. Acta Paediatr Scand 73: 868–874

    CAS  Article  Google Scholar 

  61. 61

    Simon DB et al. (1996) Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14: 152–156

    CAS  Article  Google Scholar 

  62. 62

    Simon DB et al. (1996) Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 13: 183–188

    CAS  Article  Google Scholar 

  63. 63

    Brennan TM et al. (1998) Linkage of infantile Bartter syndrome with sensorineural deafness to chromosome 1p. Am J Hum Genet 62: 355–361

    CAS  Article  Google Scholar 

  64. 64

    Delpire E et al. (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22: 192–195

    CAS  Article  Google Scholar 

  65. 65

    Tong GM and Rude RK (2005) Magnesium deficiency in critical illness. J Intensive Care Med 20: 3–17

    Article  Google Scholar 

  66. 66

    Siegel D et al. (1992) Diuretics, serum and intracellular electrolyte levels, and ventricular arrhythmias in hypertensive men. JAMA 267: 1083–1089

    CAS  Article  Google Scholar 

  67. 67

    Shah GM and Kirschenbaum MA (1991) Renal magnesium wasting associated with therapeutic agents. Miner Electrolyte Metab 17: 58–64

    CAS  PubMed  Google Scholar 

  68. 68

    Chang CT et al. (2007) Ciclosporin reduces paracellin-1 expression and magnesium transport in thick ascending limb cells. Nephrol Dial Transplant 22: 1033–1040

    CAS  Article  Google Scholar 

  69. 69

    Epstein M et al. (2006) Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N Engl J Med 355: 1834–1836

    CAS  Article  Google Scholar 

  70. 70

    Ryzen E and Rude RK (1990) Low intracellular magnesium in patients with acute pancreatitis and hypocalcemia. West J Med 152: 145–148

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Elisaf M et al. (1995) Pathogenetic mechanisms of hypomagnesemia in alcoholic patients. J Trace Elem Med Biol 9: 210–214

    CAS  Article  Google Scholar 

  72. 72

    Kaye M (1997) Hungry bone syndrome after surgical parathyroidectomy. Am J Kidney Dis 30: 730–731

    CAS  Article  Google Scholar 

  73. 73

    White JR Jr and Campbell RK (1993) Magnesium and diabetes: a review. Ann Pharmacother 27: 775–780

    Article  Google Scholar 

  74. 74

    Gitelman HJ et al. (1966) A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79: 221–235

    CAS  PubMed  Google Scholar 

  75. 75

    Muller D et al. (2006) Unusual clinical presentation and possible rescue of a novel claudin-16 mutation. J Clin Endocrinol Metab 91: 3076–3079

    Article  Google Scholar 

  76. 76

    Pollak MR et al. (1993) Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75: 1297–1303

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir Said Alizadeh Naderi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naderi, A., Reilly, R. Hereditary etiologies of hypomagnesemia. Nat Rev Nephrol 4, 80–89 (2008). https://doi.org/10.1038/ncpneph0680

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing