Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal disease in patients with cancer

Abstract

Kidney disease is very common in patients with cancer. Nephrologists are vital members of the multidisciplinary care team for these patients. Given the high prevalence of comorbidities in patients treated for active malignancy, it is not surprising that these individuals frequently develop renal diseases that are common among other hospitalized patients, such as those arising from sepsis, hypotension or use of nephrotoxic agents (e.g. radiocontrast or antimicrobial agents). The role of the nephrologist in these cases differs little with respect to the presence or absence of cancer. On the other hand, there are several renal syndromes that are unique to patients with cancer, being caused either by the cancer itself or by its treatment. These syndromes are reviewed here. In addition, patients who are receiving chemotherapy often require dialysis for either acute or chronic kidney disease. Unfortunately, there is very little information on the clearance characteristics of most chemotherapeutic agents. In cancer patients with renal disease, both the timing of administration and the dose-adjustment of chemotherapy must rely on clinical experience and close clinical observation.

Key Points

  • Patients with cancer are at high risk of developing acute kidney injury (AKI), caused either by the malignancy per se or by its treatment

  • AKI in patients with cancer is associated with a higher mortality rate than is AKI in people without cancer

  • The effect of dialysis on clearance of most chemotherapeutic agents (particularly those undergoing phase I or II trials) in many clinical circumstances is unknown

  • Several renal syndromes are unique to patients with cancer and these include bone marrow transplant nephropathy, sinusoidal obstruction syndrome of the liver, radiation nephritis, tumor lysis syndrome, myeloma kidney, and toxic injury resulting from chemotherapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment of malignant hypercalcemia.

Similar content being viewed by others

References

  1. Benoit DD et al. (2005) Outcome in critically ill medical patients treated with renal replacement therapy for acute renal failure: comparison between patients with and those without haematological malignancies. Nephrol Dial Transplant 20: 552–558

    Article  PubMed  Google Scholar 

  2. Lanore JJ et al. (1991) Hemodialysis for acute renal failure in patients with hematologic malignancies. Crit Care Med 19: 46–51

    Article  Google Scholar 

  3. Albright RC Jr (2001) Acute renal failure: a practical update. Mayo Clin Proc 76: 67–74

    Article  PubMed  Google Scholar 

  4. Brivet FG et al. (1996) Acute renal failure in intensive care units—causes, outcome, and prognostic factors of hospital mortality: a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med 24: 192–198

    Article  CAS  PubMed  Google Scholar 

  5. van Bommel EF et al. (1994) Continuous renal replacement therapy for critically ill patients: an update. J Intensive Care Med 9: 265–280

    Article  CAS  PubMed  Google Scholar 

  6. Huynh TT et al. (2002) Determinants of hospital length of stay after thoracoabdominal aortic aneurysm repair. J Vasc Surg 35: 648–653

    Article  CAS  PubMed  Google Scholar 

  7. Dimick JB et al. (2003) Complications and costs after high-risk surgery: where should we focus quality improvement initiatives? J Am Coll Surg 196: 671–678

    Article  PubMed  Google Scholar 

  8. Silvester W (1998) Outcome studies of continuous renal replacement therapy in the intensive care unit. Kidney Int Suppl 66: S138–S141

    CAS  PubMed  Google Scholar 

  9. Lassnigg A et al. (2004) Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15: 1597–1605

    Article  CAS  PubMed  Google Scholar 

  10. Levy EM et al. (1996) The effect of acute renal failure on mortality: a cohort analysis. JAMA 275: 1489–1494

    Article  CAS  PubMed  Google Scholar 

  11. Samuels J et al. (2005) Small increases in serum creatinine are associated with prolonged ICU stay and increased hospital mortality. Presented at Renal Week: 2005 November 10–13, Philadelphia, PA, USA

  12. Bellomo R et al. (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8: R204–R212

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abosaif NY et al. (2005) The outcome of acute renal failure in the intensive care unit according to RIFLE: model application, sensitivity, and predictability. Am J Kidney Dis 46: 1038–1048

    Article  PubMed  Google Scholar 

  14. Bell M et al. (2005) Optimal follow-up time after continuous renal replacement therapy in actual renal failure patients stratified with the RIFLE criteria. Nephrol Dial Transplant 20: 354–360

    Article  PubMed  Google Scholar 

  15. Kuitunen A et al. (2006) Acute renal failure after cardiac surgery: evaluation of the RIFLE classification. Ann Thorac Surg 81: 542–546

    Article  PubMed  Google Scholar 

  16. Gruss E et al. (1995) Acute renal failure in patients following bone marrow transplantation: prevalence, risk factors and outcome. Am J Nephrol 15: 473–479

    Article  CAS  PubMed  Google Scholar 

  17. Zager RA (1994) Acute renal failure in the setting of bone marrow transplantation. Kidney Int 46: 1443–1458

    Article  CAS  PubMed  Google Scholar 

  18. Smith DM et al. (1987) Acute renal failure associated with autologous bone marrow transplantation. Bone Marrow Transplant 2: 195–201

    CAS  PubMed  Google Scholar 

  19. Attal M et al. (1992) Prevention of hepatic veno-occlusive disease after bone marrow transplantation by continuous infusion of low-dose heparin: a prospective, randomized trial. Blood 79: 2834–2840

    CAS  PubMed  Google Scholar 

  20. Gluckman E et al. (1990) Use of prostaglandin E1 for prevention of liver veno-occlusive disease in leukaemic patients treated by allogeneic bone marrow transplantation. Br J Haematol 74: 277–281

    Article  CAS  PubMed  Google Scholar 

  21. Bianco JA et al. (1991) Phase I–II trial of pentoxifylline for the prevention of transplant-related toxicities following bone marrow transplantation. Blood 78: 1205–1211

    CAS  PubMed  Google Scholar 

  22. Bearman SI (2001) Avoiding hepatic veno-occlusive disease: what do we know and where are we going? Bone Marrow Transplant 27: 1113–1120

    Article  CAS  PubMed  Google Scholar 

  23. Richardson PG et al. (2002) Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: response without significant toxicity in a high-risk population and factors predictive of outcome. Blood 100: 4337–4343

    Article  CAS  PubMed  Google Scholar 

  24. Chopra R et al. (2000) Defibrotide for the treatment of hepatic veno-occlusive disease: results of the European compassionate-use study. Br J Haematol 111: 1122–1129

    Article  CAS  PubMed  Google Scholar 

  25. Loomis LJ et al. (1989) Hemolytic uremic syndrome following bone marrow transplantation: a case report and review of the literature. Am J Kidney Dis 14: 324–328

    Article  CAS  PubMed  Google Scholar 

  26. Silva VA et al. (1991) Plasma exchange and vincristine in the treatment of hemolytic uremic syndrome/thrombotic thrombocytopenic purpura associated with bone marrow transplantation. J Clin Apheresis 6: 16–20

    Article  CAS  PubMed  Google Scholar 

  27. Markowitz GS (2004) Dysproteinemia and the kidney. Adv Anat Pathol 11: 49–63

    Article  PubMed  Google Scholar 

  28. Winearls CG (1995) Acute myeloma kidney. Kidney Int 48: 1347–1361

    Article  CAS  PubMed  Google Scholar 

  29. Durie BG et al. (2003) Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Hematol J 4: 379–398

    Article  PubMed  Google Scholar 

  30. Blade J et al. (1998) Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch Intern Med 158: 1889–1893

    Article  CAS  PubMed  Google Scholar 

  31. Zucchelli P et al. (1988) Controlled plasma exchange trial in acute renal failure due to multiple myeloma. Kidney Int 33: 1175–1180

    Article  CAS  PubMed  Google Scholar 

  32. Johnson WJ et al. (1990) Treatment of renal failure associated with multiple myeloma: plasmapheresis, hemodialysis, and chemotherapy. Arch Intern Med 150: 863–869

    Article  CAS  PubMed  Google Scholar 

  33. Clark WF et al. (2005) Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann Intern Med 143: 777–784

    Article  PubMed  Google Scholar 

  34. Cohen L et al. (1980) Acute tumor lysis syndrome: a review of 37 patients with Burkitt lymphoma. Am J Med 68: 486–491

    Article  CAS  PubMed  Google Scholar 

  35. Arrambide K and Toto RD (1993) Tumor lysis syndrome. Semin Nephrol 13: 273–280

    CAS  PubMed  Google Scholar 

  36. Kjellstrand CM et al. (1974) Hyperuricemic acute renal failure. Arch Intern Med 133: 349–359

    Article  CAS  PubMed  Google Scholar 

  37. Conger J (1981) Acute uric acid nephropathy. Semin Nephrol 1: 69–74

    CAS  Google Scholar 

  38. Boles JM et al. (1984) Acute renal failure caused by extreme hyperphosphatemia after chemotherapy of an acute lymphoblastic leukemia. Cancer 53: 2425–2429

    Article  CAS  PubMed  Google Scholar 

  39. Jones DP et al. (1995) Tumor lysis syndrome: pathogenesis and management. Pediatr Nephrol 9: 206–212

    Article  CAS  PubMed  Google Scholar 

  40. Ten Harkel AD et al. (1998) Alkalinization and the tumor lysis syndrome. Med Pediatr Oncol 31: 27–28

    Article  CAS  PubMed  Google Scholar 

  41. Masera G et al. (1982) Urate-oxidase prophylaxis of uric acid-induced renal damage in childhood leukemia. J Pediatr 100: 152–155

    Article  CAS  PubMed  Google Scholar 

  42. Bessmertny O et al. (2005) Rasburicase: a new approach for preventing and/or treating tumor lysis syndrome. Curr Pharm Des 11: 4177–4185

    Article  CAS  PubMed  Google Scholar 

  43. Saccente SL et al. (1995) Prevention of tumor lysis syndrome using continuous veno-venous hemofiltration. Pediatr Nephrol 9: 569–573

    Article  CAS  PubMed  Google Scholar 

  44. Smolens P et al. (1987) Hypercalcemia can potentiate the nephrotoxicity of Bence Jones proteins. J Lab Clin Med 110: 460–465

    CAS  PubMed  Google Scholar 

  45. Lin JH (1996) Bisphosphonates: a review of their pharmacokinetic properties. Bone 18: 75–85

    Article  CAS  PubMed  Google Scholar 

  46. Fleisch H (1991) Bisphosphonates: pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease. Drugs 42: 919–944

    Article  CAS  PubMed  Google Scholar 

  47. Singer FR and Minoofar PN (1995) Bisphosphonates in the treatment of disorders of mineral metabolism. Adv Endocrinol Metab 6: 259–288

    CAS  PubMed  Google Scholar 

  48. Guay DR (2006) Ibandronate, an experimental intravenous bisphosphonate for osteoporosis, bone metastases, and hypercalcemia of malignancy. Pharmacotherapy 26: 655–673

    Article  CAS  PubMed  Google Scholar 

  49. Hosking DJ and Gilson D (1984) Comparison of the renal and skeletal actions of calcitonin in the treatment of severe hypercalcaemia of malignancy. Q J Med 53: 359–368

    CAS  PubMed  Google Scholar 

  50. Kanfer A et al. (1976) Acute renal insufficiency due to lymphomatous infiltration of the kidneys: report of six cases. Cancer 38: 2588–2592

    Article  CAS  PubMed  Google Scholar 

  51. Koolen MI et al. (1988) Non-Hodgkin lymphoma with unique localization in the kidneys presenting with acute renal failure. Clin Nephrol 29: 41–46

    CAS  PubMed  Google Scholar 

  52. Malbrain ML et al. (1994) Acute renal failure due to bilateral lymphomatous infiltrates. Primary extranodal non-Hodgkin's lymphoma (p-EN-NHL) of the kidneys: does it really exist? Clin Nephrol 42: 163–169

    CAS  PubMed  Google Scholar 

  53. Miyake JS et al. (1990) Diagnosis and characterization of non-Hodgkin's lymphoma in a patient with acute renal failure. Am J Kidney Dis 16: 262–263

    Article  CAS  PubMed  Google Scholar 

  54. Da'as N et al. (2001) Kidney involvement and renal manifestations in non-Hodgkin's lymphoma and lymphocytic leukemia: a retrospective study in 700 patients. Eur J Haematol 67: 158–164

    Article  CAS  PubMed  Google Scholar 

  55. Comerma-Coma MI et al. (1998) Reversible renal failure due to specific infiltration of the kidney in chronic lymphocytic leukaemia. Nephrol Dial Transplant 13: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  56. Pagniez DC et al. (1988) Reversible renal failure due to specific infiltration in chronic lymphocytic leukemia. Am J Med 85: 579–580

    Article  CAS  PubMed  Google Scholar 

  57. Phillips JK et al. (1993) Renal failure caused by leukaemic infiltration in chronic lymphocytic leukaemia. J Clin Pathol 46: 1131–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klahr S (1998) Obstructive nephropathy. Kidney Int 54: 286–300

    CAS  PubMed  Google Scholar 

  59. Batlle DC et al. (1981) Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med 304: 373–380

    Article  CAS  PubMed  Google Scholar 

  60. Schlueter W and Batlle DC (1988) Chronic obstructive nephropathy. Semin Nephrol 8: 17–28

    CAS  PubMed  Google Scholar 

  61. Vaughan ED Jr and Gillenwater JY (1973) Diagnosis, characterization and management of post-obstructive diuresis. J Urol 109: 286–292

    Article  PubMed  Google Scholar 

  62. Krochak RJ and Baker DG (1986) Radiation nephritis: clinical manifestations and pathophysiologic mechanisms. Urology 27: 389–393

    Article  CAS  PubMed  Google Scholar 

  63. Cassady JR (1995) Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys 31: 1249–1256

    Article  CAS  PubMed  Google Scholar 

  64. Cohen EP (2000) Radiation nephropathy after bone marrow transplantation. Kidney Int 58: 903–918

    Article  CAS  PubMed  Google Scholar 

  65. Moulder JE et al. (1987) Renal toxicity following total-body irradiation and syngeneic bone marrow transplantation. Transplantation 43: 589–592

    Article  CAS  PubMed  Google Scholar 

  66. Cohen EP et al. (1996) Captopril preserves function and ultrastructure in experimental radiation nephropathy. Lab Invest 75: 349–360

    CAS  PubMed  Google Scholar 

  67. Goren MP (2003) Cisplatin nephrotoxicity affects magnesium and calcium metabolism. Med Pediatr Oncol 41: 186–189

    Article  PubMed  Google Scholar 

  68. Ries F and Klastersky J (1986) Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis 8: 368–379

    Article  CAS  PubMed  Google Scholar 

  69. Kintzel PE (2001) Anticancer drug-induced kidney disorders. Drug Saf 24: 19–38

    Article  CAS  PubMed  Google Scholar 

  70. Labaye J et al. (2005) Renal toxicity of oxaliplatin. Nephrol Dial Transplant 20: 1275–1276

    Article  CAS  PubMed  Google Scholar 

  71. Pinotti G and Martinelli B (2002) A case of acute tubular necrosis due to oxaliplatin. Ann Oncol 13: 1951–1952

    Article  CAS  PubMed  Google Scholar 

  72. Skinner R (1995) Strategies to prevent nephrotoxicity of anticancer drugs. Curr Opin Oncol 7: 310–315

    Article  CAS  PubMed  Google Scholar 

  73. Skinner R et al. (1993) Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol 11: 173–190

    Article  CAS  PubMed  Google Scholar 

  74. Skinner R et al. (1990) Nephrotoxicity after ifosfamide. Arch Dis Child 65: 732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Skinner R et al. (2000) Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children's Cancer Study Group. Br J Cancer 82: 1636–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aleksa K et al. (2001) Young age and the risk for ifosfamide-induced nephrotoxicity: a critical review of two opposing studies. Pediatr Nephrol 16: 1153–1158

    Article  CAS  PubMed  Google Scholar 

  77. Condit PT et al. (1969) Renal toxicity of methotrexate. Cancer 23: 126–131

    Article  CAS  PubMed  Google Scholar 

  78. Kepka L et al. (1998) Successful rescue in a patient with high dose methotrexate-induced nephrotoxicity and acute renal failure. Leuk Lymphoma 29: 205–209

    Article  CAS  PubMed  Google Scholar 

  79. Ackland SP and Schilsky RL (1987) High-dose methotrexate: a critical reappraisal. J Clin Oncol 5: 2017–2031

    Article  CAS  PubMed  Google Scholar 

  80. Widemann BC and Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11: 694–703

    Article  CAS  PubMed  Google Scholar 

  81. Wall SM et al. (1996) Effective clearance of methotrexate using high-flux hemodialysis membranes. Am J Kidney Dis 28: 846–854

    Article  CAS  PubMed  Google Scholar 

  82. Saland JM et al. (2002) Effective removal of methotrexate by high-flux hemodialysis. Pediatr Nephrol 17: 825–829

    Article  PubMed  Google Scholar 

  83. Webb DE et al. (1988) Metabolic and renal effects of interleukin-2 immunotherapy for metastatic cancer. Clin Nephrol 30: 141–145

    CAS  PubMed  Google Scholar 

  84. Ault BH et al. (1988) Acute renal failure during therapy with recombinant human gamma interferon. N Engl J Med 319: 1397–1400

    Article  CAS  PubMed  Google Scholar 

  85. Shah M et al. (1998) Interferon-alpha-associated focal segmental glomerulosclerosis with massive proteinuria in patients with chronic myeloid leukemia following high dose chemotherapy. Cancer 83: 1938–1946

    Article  CAS  PubMed  Google Scholar 

  86. Coroneos E et al. (1996) Focal segmental glomerulosclerosis with acute renal failure associated with alpha-interferon therapy. Am J Kidney Dis 28: 888–892

    Article  CAS  PubMed  Google Scholar 

  87. Horowitz R et al. (1995) Interferon-induced acute renal failure: a case report and literature review. Med Oncol 12: 55–57

    Article  CAS  PubMed  Google Scholar 

  88. Fahal IH et al. (1993) Acute renal failure during interferon treatment. BMJ 306: 973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Averbuch SD et al. (1984) Acute interstitial nephritis with the nephrotic syndrome following recombinant leukocyte a interferon therapy for mycosis fungoides. N Engl J Med 310: 32–35

    Article  CAS  PubMed  Google Scholar 

  90. Mercatello A et al. (1991) Acute renal failure with preserved renal plasma flow induced by cancer immunotherapy. Kidney Int 40: 309–314

    Article  CAS  PubMed  Google Scholar 

  91. Memoli B et al. (1995) Interleukin-2-induced renal dysfunction in cancer patients is reversed by low-dose dopamine infusion. Am J Kidney Dis 26: 27–33

    Article  CAS  PubMed  Google Scholar 

  92. Ponce P et al. (1993) Renal toxicity mediated by continuous infusion of recombinant interleukin-2. Nephron 64: 114–118

    Article  CAS  PubMed  Google Scholar 

  93. Druker BJ et al. (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037

    Article  CAS  PubMed  Google Scholar 

  94. Pou M et al. (2003) Acute renal failure secondary to imatinib mesylate treatment in chronic myeloid leukemia. Leuk Lymphoma 44: 1239–1241

    Article  CAS  PubMed  Google Scholar 

  95. Ronco PM (1999) Paraneoplastic glomerulopathies: new insights into an old entity. Kidney Int 56: 355–377

    Article  CAS  PubMed  Google Scholar 

  96. Lefaucheur C et al. (2006) Membranous nephropathy and cancer: epidemiologic evidence and determinants of high-risk cancer association. Kidney Int 70: 1510–1517

    Article  CAS  PubMed  Google Scholar 

  97. Plager J and Stutzman L (1971) Acute nephrotic syndrome as a manifestation of active Hodgkin's disease: report of four cases and review of the literature. Am J Med 50: 56–66

    Article  CAS  PubMed  Google Scholar 

  98. Kramer P et al. (1981) Nephrotic syndrome in Hodgkin's disease: report of five cases and review of the literature. Neth J Med 24: 114–119

    CAS  PubMed  Google Scholar 

  99. Dabbs DJ et al. (1986) Glomerular lesions in lymphomas and leukemias. Am J Med 80: 63–70

    Article  CAS  PubMed  Google Scholar 

  100. Mazanowska O and Klinger M (2005) Glomerulonephritis in neoplastic disease [Polish]. Pol Merkur Lekarski 19: 211–214

    PubMed  Google Scholar 

  101. Hiesse C et al. (1988) Membranous nephropathy in a bone marrow transplant recipient. Am J Kidney Dis 11: 188–191

    Article  CAS  PubMed  Google Scholar 

  102. Gomez-Garcia P et al. (1988) Renal involvement in chronic graft-versus-host disease: a report of two cases. Bone Marrow Transplant 3: 357–362

    CAS  PubMed  Google Scholar 

  103. Muller GA et al. (1989) Membranous nephropathy after bone marrow transplantation in ciclosporin treatment. Nephron 51: 555–556

    Article  CAS  PubMed  Google Scholar 

  104. Barbara JA et al. (1992) Membranous nephropathy with graft-versus-host disease in a bone marrow transplant recipient. Clin Nephrol 37: 115–118

    CAS  PubMed  Google Scholar 

  105. Walker J et al. (1995) Minimal-change nephrotic syndrome after cyclosporine withdrawal in a marrow transplant recipient. Am J Kidney Dis 26: 532–534

    Article  CAS  PubMed  Google Scholar 

  106. Rossi L et al. (2001) Membranous glomerulonephritis after haematopoietic cell transplantation for multiple myeloma. Nephron 88: 260–263

    Article  CAS  PubMed  Google Scholar 

  107. Kimura S et al. (2003) Nephrotic syndrome with crescent formation and massive IgA deposition following allogeneic bone marrow transplantation for natural killer cell leukemia/lymphoma. Blood 101: 4219–4221

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W Finkel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkel, K., Foringer, J. Renal disease in patients with cancer. Nat Rev Nephrol 3, 669–678 (2007). https://doi.org/10.1038/ncpneph0622

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing