Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anemia in diabetes: marker or mediator of microvascular disease?

Abstract

Anemia is a common finding in patients with diabetes due to the high burden of chronic kidney disease in this population. Anemia is more prevalent and is found earlier in patients with diabetes than in those with kidney disease from other causes. The increased risk of anemia in diabetes probably reflects changes in the renal tubulointerstitium associated with diabetic kidney disease, which disrupt the delicate interaction between interstitial fibroblasts, capillaries and tubular cells required for normal hemopoietic function. In particular, the uncoupling of the hemoglobin concentration from renal erythropoietin synthesis seems to be the key factor underlying the development of anemia. Systemic inflammation, functional hematinic deficiencies, erythropoietin resistance and reduced red cell survival also drive anemia in the setting of impaired renal compensation. Although anemia can be considered a marker of kidney damage, reduced hemoglobin levels independently identify diabetic patients with an increased risk of microvascular complications, cardiovascular disease and mortality. Nevertheless, a direct role in the development or progression of diabetic complications remains to be clearly established and the clinical utility of correcting anemia in diabetic patients has yet to be demonstrated in randomized controlled trials. Correction of anemia certainly improves performance and quality of life in diabetic patients. In the absence of additional data, treatment should be considered palliative, and any functional benefits must be matched against costs to the patient and the health system.

Key Points

  • Anemia develops earlier, more frequently, and is more severe, in patients with diabetic (as opposed to nondiabetic) kidney disease

  • Features of the diabetic milieu (systemic inflammation, functional hematinic deficiencies, resistance of bone marrow to erythropoietin, and red cell abnormalities) cause hemoglobin levels to drop

  • Tubular dysfunction results in 'uncoupling' of hemoglobin concentration from renal erythropoietin synthesis, such that erythropoietin production cannot be ramped up when demand increases

  • Reduced hemoglobin level is associated with an increased risk of progression to end-stage renal disease

  • Anemia in diabetes is associated with increased cardiovascular morbidity and mortality, hypertension, retinopathy, neuropathy and foot ulcers

  • The clinical utility of fully correcting anemia in patients with chronic kidney disease has yet to be demonstrated in randomized controlled trials

  • Correcting anemia improves patient performance and quality of life

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency of anemia in patients with type 2 diabetes from Australian general practice (results from the NEFRON study).10
Figure 2: Average change in hemoglobin levels in patients with diabetes but without anemia at baseline.
Figure 3: Anemia and erythropoietin synthesis.
Figure 4: Diabetic patients with anemia require more antihypertensives for the same level of renal function and degree of blood pressure control as individuals without anemia (results from the NEFRON study).10

Similar content being viewed by others

References

  1. McClellan W et al. (2004) The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin 20: 1501–1510

    Article  PubMed  Google Scholar 

  2. Thomas MC et al. (2003) Unrecognized anemia in patients with diabetes: a cross-sectional survey. Diabetes Care 26: 1164–1169

    Article  PubMed  Google Scholar 

  3. Lundin AP (1989) Quality of life: subjective and objective improvements with recombinant human erythropoietin therapy. Semin Nephrol 9: 22–29

    CAS  PubMed  Google Scholar 

  4. [No authors listed] (1990) Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. Canadian Erythropoietin Study Group. BMJ 300: 573–578

  5. Srivastava PM et al. (2005) Diastolic dysfunction is associated with anaemia in patients with type II diabetes. Clin Sci (Lond) 110: 109–116

    Article  Google Scholar 

  6. Volkova N and Arab L (2006) Evidence-based systematic literature review of hemoglobin/hematocrit and all-cause mortality in dialysis patients. Am J Kidney Dis 47: 24–36

    Article  PubMed  Google Scholar 

  7. Astor BC et al. (2002) Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988–1994). Arch Intern Med 162: 1401–1408

    Article  PubMed  Google Scholar 

  8. [No authors listed] 2005 KEEP 2004 Data Report. Am J Kidney Dis 45 (Suppl 2): S8–S13, S76–S77

  9. Lorber D and Reddan D (2006) Clinical characteristics of chronic kidney disease patients with and without diabetes: a subanalysis of the PAERI study. Clin Nephrol 66: 11–16

    Article  CAS  PubMed  Google Scholar 

  10. Thomas MC et al. (2006) The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med J Aust 185: 140–144

    PubMed  Google Scholar 

  11. Bosman DR et al. (2001) Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care 24: 495–499

    Article  CAS  PubMed  Google Scholar 

  12. Ishimura E et al. (1998) Diabetes mellitus increases the severity of anemia in non-dialyzed patients with renal failure. J Nephrol 11: 83–86

    CAS  PubMed  Google Scholar 

  13. Collins AJ (2003) Annual data report: National Kidney Foundation Kidney Early Evaluation Program (KEEP) Am J Kidney Dis 42 (Suppl 4): S52–S55

    Google Scholar 

  14. Thomas M et al. (2006) The epidemiology of hemoglobin levels in patients with type 2 diabetes. Am J Kidney Dis 48: 537–545

    Article  CAS  PubMed  Google Scholar 

  15. Thomas MC et al. (2004) The burden of anaemia in type 2 diabetes and the role of nephropathy: a cross-sectional audit. Nephrol Dial Transplant 19: 1792–1797

    Article  PubMed  Google Scholar 

  16. Thomas MC et al. (2004) Anemia in patients with type 1 diabetes. J Clin Endocrinol Metab 89: 4359–4363

    Article  CAS  PubMed  Google Scholar 

  17. Craig KJ et al. (2005) Anemia and diabetes in the absence of nephropathy. Diabetes Care 28: 1118–1123

    Article  PubMed  Google Scholar 

  18. Saito T et al. (2005) Normocytic normochromic anemia due to automatic neuropathy in type 2 diabetic patients without severe nephropathy: a possible role of microangiopathy. Diabetes Res Clin Pract 70: 239–247

    Article  PubMed  Google Scholar 

  19. Inomata S et al. (1997) Serum levels of erythropoietin as a novel marker reflecting the severity of diabetic nephropathy. Nephron 75: 426–430

    Article  CAS  PubMed  Google Scholar 

  20. Thomas MC et al. (2005) Anemia in diabetes: an emerging complication of microvascular disease. Current Diabet Rev 1: 107–126

    Article  CAS  Google Scholar 

  21. Eckardt KU et al. (1989) Regulation of erythropoietin production is related to proximal tubular function. Am J Physiol 256: F942–F947

    CAS  PubMed  Google Scholar 

  22. Thomas MC et al. (2005) Anemia with impaired erythropoietin response in diabetic patients. Arch Intern Med 165: 466–469

    Article  PubMed  Google Scholar 

  23. Bosman DR et al. (2002) Erythropoietin response to hypoxia in patients with diabetic autonomic neuropathy and non-diabetic chronic renal failure. Diabet Med 19: 65–69

    Article  CAS  PubMed  Google Scholar 

  24. Brito PL et al. (1998) Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int 53: 754–761

    Article  CAS  PubMed  Google Scholar 

  25. Thomas MC et al. (2005) Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis 12: 177–186

    Article  CAS  PubMed  Google Scholar 

  26. Matsumoto M et al. (2004) Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol 15: 1574–1581

    Article  PubMed  Google Scholar 

  27. Catrina SB et al. (2004) Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 53: 3226–3232

    Article  CAS  PubMed  Google Scholar 

  28. Zou AP and Cowley AW Jr (2003) Reactive oxygen species and molecular regulation of renal oxygenation. Acta Physiol Scand 179: 233–241

    Article  CAS  PubMed  Google Scholar 

  29. Donnelly S (2003) Why is erythropoietin made in the kidney? The kidney functions as a critmeter. Adv Exp Med Biol 543: 73–87

    Article  CAS  PubMed  Google Scholar 

  30. Finne PH and Skoglund RW (1970) Erythropoietin production in the rat following splanchnic neurectomy. J Lab Clin Med 76: 103–106

    CAS  PubMed  Google Scholar 

  31. Winkler AS et al. (1999) Erythropoietin depletion and anaemia in diabetes mellitus. Diabet Med 16: 813–819

    Article  CAS  PubMed  Google Scholar 

  32. Jeffrey RF et al. (1995) Re-establishment of erythropoietin responsiveness in end-stage renal failure following renal transplantation. Clin Nephrol 44: 241–247

    CAS  PubMed  Google Scholar 

  33. Jennings PE et al. (1986) Sodium transport across erythrocyte membranes in diabetes mellitus. Diabetes Res 3: 407–410

    CAS  PubMed  Google Scholar 

  34. Testa I et al. (1988) Abnormal membrane fluidity and acetylcholinesterase activity in erythrocytes from insulin-dependent diabetic patients. J Clin Endocrinol Metab 67: 1129–1133

    Article  CAS  PubMed  Google Scholar 

  35. Baldini P et al. (1989) Membrane lipid alterations and Na+-pumping activity in erythrocytes from IDDM and NIDDM subjects. Diabetes 38: 825–831

    Article  CAS  PubMed  Google Scholar 

  36. Kowluru R et al. (1989) Reversible sodium pump defect and swelling in the diabetic rat erythrocyte: effects on filterability and implications for microangiopathy. Proc Natl Acad Sci USA 86: 3327–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vlassara H et al. (1987) Advanced glycosylation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages: a model for turnover of aging cells. J Exp Med 166: 539–549

    Article  CAS  PubMed  Google Scholar 

  38. Jain SK et al. (1999) Effect of vitamin E and N-acetylcysteine on phosphatidylserine externalization and induction of coagulation by high-glucose-treated human erythrocytes. Metabolism 48: 957–959

    Article  CAS  PubMed  Google Scholar 

  39. Resmi H et al. (2005) In vitro effects of high glucose concentrations on membrane protein oxidation, G-actin and deformability of human erythrocytes. Cell Biochem Funct 23: 163–168

    Article  CAS  PubMed  Google Scholar 

  40. Peterson CM et al. (1977) Reversible hematologic sequelae of diabetes mellitus. Ann Intern Med 86: 425–429

    Article  CAS  PubMed  Google Scholar 

  41. Schmitz A (1990) Increased urinary haemoglobin in diabetics with microalbuminuria—measured by an ELISA. Scand J Clin Lab Invest 50: 303–308

    Article  CAS  PubMed  Google Scholar 

  42. Manodori AB and Kuypers FA (2002) Altered red cell turnover in diabetic mice. J Lab Clin Med 140: 161–165

    Article  PubMed  Google Scholar 

  43. De Block CE et al. (2000) Soluble transferrin receptor level: a new marker of iron deficiency anemia, a common manifestation of gastric autoimmunity in type 1 diabetes. Diabetes Care 23: 1384–1388

    Article  CAS  PubMed  Google Scholar 

  44. Treem WR (2004) Emerging concepts in celiac disease. Curr Opin Pediatr 16: 552–559

    Article  PubMed  Google Scholar 

  45. Thomas MC et al. (2004) Elevated iron indices in patients with diabetes. Diabet Med 21: 798–802

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez-Real JM et al. (2002) Cross-talk between iron metabolism and diabetes. Diabetes 51: 2348–2354

    Article  CAS  PubMed  Google Scholar 

  47. Thomas MC et al. (2004) Low-molecular-weight AGEs are associated with GFR and anemia in patients with type 2 diabetes. Kidney Int 66: 1167–1172

    Article  CAS  PubMed  Google Scholar 

  48. Dikow R et al. (2002) How should we manage anaemia in patients with diabetes? Nephrol Dial Transplant 17 (Suppl 1): S67–S72

    Article  Google Scholar 

  49. Ueda H et al. (2003) Factors affecting progression of renal failure in patients with type 2 diabetes. Diabetes Care 26: 1530–1534

    Article  PubMed  Google Scholar 

  50. Yokoyama H et al. (1997) Predictors of the progression of diabetic nephropathy and the beneficial effect of angiotensin-converting enzyme inhibitors in NIDDM patients. Diabetologia 40: 405–411

    Article  CAS  PubMed  Google Scholar 

  51. Keane WF and Lyle PA (2003) Recent advances in management of type 2 diabetes and nephropathy: lessons from the RENAAL study. Am J Kidney Dis 41 (Suppl 1): S22–S25

    Article  PubMed  Google Scholar 

  52. Rossing K et al. (2004) Progression of nephropathy in type 2 diabetic patients. Kidney Int 66: 1596–1605

    Article  PubMed  Google Scholar 

  53. Lafferty HM et al. (1991) Anemia: a potent modulator of renal hemodynamics in models of progressive renal disease. Am J Kidney Dis 17: 2–7

    CAS  PubMed  Google Scholar 

  54. Jungers P et al. (2001) Beneficial influence of recombinant human erythropoietin therapy on the rate of progression of chronic renal failure in predialysis patients. Nephrol Dial Transplant 16: 307–312

    Article  CAS  PubMed  Google Scholar 

  55. Kuriyama S et al. (1997) Reversal of anemia by erythropoietin therapy retards the progression of chronic renal failure, especially in nondiabetic patients. Nephron 77: 176–185

    Article  CAS  PubMed  Google Scholar 

  56. Drueke TB et al. (2006) Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 355: 2071–2084

    Article  CAS  PubMed  Google Scholar 

  57. Singh AK et al. (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355: 2085–2098

    Article  CAS  PubMed  Google Scholar 

  58. Thomas MC et al. (2006) Anaemia in diabetes: is there a rationale to TREAT? Diabetologia 49: 1151–1157

    Article  CAS  PubMed  Google Scholar 

  59. Sarnak MJ et al. (2002) Anemia as a risk factor for cardiovascular disease in the Atherosclerosis Risk in Communities (ARIC) study. J Am Coll Cardiol 40: 27–33

    Article  PubMed  Google Scholar 

  60. Zeidman A et al. (2004) Anaemia as a risk factor for ischemic heart disease. Isr Med Assoc J 6: 16–18

    PubMed  Google Scholar 

  61. Ezekowitz JA et al. (2003) Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12,065 patients with new-onset heart failure. Circulation 107: 223–225

    Article  PubMed  Google Scholar 

  62. Besarab A et al. (1998) The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 339: 584–590

    Article  CAS  PubMed  Google Scholar 

  63. Sandgren PE et al. (2005) Anemia and new-onset congestive heart failure in the general Medicare population. J Card Fail 11: 99–105

    Article  PubMed  Google Scholar 

  64. Brucks S et al. (2004) Relation of anemia to diastolic heart failure and the effect on outcome. Am J Cardiol 93: 1055–1057

    Article  PubMed  Google Scholar 

  65. Devereux RB et al. (2000) Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 101: 2271–2276

    Article  CAS  PubMed  Google Scholar 

  66. Hayashi T et al. (2000) Cardiovascular effect of normalizing the hematocrit level during erythropoietin therapy in predialysis patients with chronic renal failure. Am J Kidney Dis 35: 250–256

    Article  CAS  PubMed  Google Scholar 

  67. Silverberg DS et al. (2003) The effect of correction of anaemia in diabetics and non-diabetics with severe resistant congestive heart failure and chronic renal failure by subcutaneous erythropoietin and intravenous iron. Nephrol Dial Transplant 18: 141–146

    Article  CAS  PubMed  Google Scholar 

  68. Kuwabara Y et al. (2002) Cerebral blood flow and vasodilatory capacity in anemia secondary to chronic renal failure. Kidney Int 61: 564–569

    Article  PubMed  Google Scholar 

  69. Langenfeld MR et al. (1997) Is endogenous erythropoietin a pathogenetic factor in the development of essential hypertension? Nephrol Dial Transplant 12: 1155–1160

    Article  CAS  PubMed  Google Scholar 

  70. Vaziri ND et al. (1992) Plasma concentration and urinary excretion of erythropoietin in adult nephrotic syndrome. Am J Med 92: 35–40

    Article  CAS  PubMed  Google Scholar 

  71. Kobusiak-Prokopowicz M and Jodla-Mydlowska B (2002) Erythropoietin in patients with essential hypertension. Kardiol Pol 57: 407–414

    PubMed  Google Scholar 

  72. Wada Y et al. (1999) Erythropoietin impairs endothelium-dependent vasorelaxation through cyclooxygenase-dependent mechanisms in humans. Am J Hypertens 12: 980–987

    Article  CAS  PubMed  Google Scholar 

  73. Zhu X and Perazella MA (2006) Nonhematologic complications of erythropoietin therapy. Semin Dial 19: 279–284

    Article  PubMed  Google Scholar 

  74. Davis MD et al. (1998) Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: Early Treatment Diabetic Retinopathy Study Report #18. Invest Ophthalmol Vis Sci 39: 233–252

    CAS  PubMed  Google Scholar 

  75. Qiao Q et al. (1997) The relationship between hemoglobin levels and diabetic retinopathy. J Clin Epidemiol 50: 153–158

    Article  CAS  PubMed  Google Scholar 

  76. Friedman EA et al. (1995) Erythropoietin in diabetic macular edema and renal insufficiency. Am J Kidney Dis 26: 202–208

    Article  CAS  PubMed  Google Scholar 

  77. Friedman EA et al. (2003) Treating azotemia-induced anemia with erythropoietin improves diabetic eye disease. Kidney Int 64 (Suppl 87): S57–S63

  78. Veves A et al. (1996) The impact of reversal of hypoxia by revascularization on the peripheral nerve function of diabetic patients. Diabetologia 39: 344–348

    Article  CAS  PubMed  Google Scholar 

  79. Bianchi R et al. (2004) Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci USA 101: 823–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hassan K et al. (2003) Effect of erythropoietin therapy on polyneuropathy in predialytic patients. J Nephrol 16: 121–125

    CAS  PubMed  Google Scholar 

  81. Kessler L et al. (2003) Hyperbaric oxygenation accelerates the healing rate of nonischemic chronic diabetic foot ulcers: a prospective randomized study. Diabetes Care 26: 2378–2382

    Article  PubMed  Google Scholar 

  82. Schmidt-Lucke C et al. (2000) Incidence of cutaneous vasoactivity in patients with anaemia and pulmonary hypoxia. Vasa 29: 112–115

    Article  CAS  PubMed  Google Scholar 

  83. Akanji AO et al. (1989) Factors influencing the outcome of treatment of foot lesions in Nigerian patients with diabetes mellitus. Q J Med 73: 1005–1014

    CAS  PubMed  Google Scholar 

  84. Lavery LA et al. (1997) Institutionalization following diabetes-related lower extremity amputation. Am J Med 103: 383–388

    Article  CAS  PubMed  Google Scholar 

  85. Vlahakis N (2006) Is erythropoietin the key to optimize wound healing? Crit Care Med 34: 1279–1280

    Article  PubMed  Google Scholar 

  86. Wakeen M and Zimmerman S (1998) Association between human recombinant EPO and peripheral vascular disease in diabetic patients receiving peritoneal dialysis. Am J Kidney Dis 32: 488–493

    Article  CAS  PubMed  Google Scholar 

  87. Cody J et al. (2001) Recombinant human erythropoietin for chronic renal failure anaemia in pre-dialysis patients. The Cochrane Database of Systematic Reviews, Issue 4, Art. No CD003266.pub2

    Google Scholar 

  88. Locatelli F et al. (2004) Revised European best practice guidelines for the management of anaemia in patients with chronic renal failure. Nephrol Dial Transplant 19 (Suppl 2): Sii1–Sii4755

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declared he has received research grants from Amgen Australia and Janssen-Cilag, both manufacturers of erythropoietin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, M. Anemia in diabetes: marker or mediator of microvascular disease?. Nat Rev Nephrol 3, 20–30 (2007). https://doi.org/10.1038/ncpneph0378

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing